{"title":"新型弯曲拉挤成形玻璃纤维增强复合材料工字梁的弯曲破坏行为","authors":"Lvtao Zhu, S. Cao, Xiaofeng Zhang, Lei Li","doi":"10.2478/aut-2021-0005","DOIUrl":null,"url":null,"abstract":"Abstract The glass fiber reinforced resin matrix composite I-beams were designed and formed via a type of novel bending pultrusion processing technique, and the three-point bending tests were carried out to analyze the mechanical bending performances. The obtained results show that the main failure mode of the composite I-beam under the bending load is the upper structure (top flange) cracks along the length direction of the fibers, and the cracks simultaneously propagate downwards in the vertical direction. The bifurcated cracks can be found at the junction area between the top flange and web. In addition, the main bending failure mechanism of the composite I-beam includes the matrix cracking, propagation of cracks, and final fracture failure. In particular, noting that when the crack reaches the I-shaped neck position, the lateral bifurcation occurs, and the resulting secondary cracks further extend in two directions, which leads to the serious damage between the top flange and web, and the ultimate fracture failure occurs.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"172 - 176"},"PeriodicalIF":1.1000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bending Failure Behavior of the Glass Fiber Reinforced Composite I-Beams Formed by a Novel Bending Pultrusion Processing Technique\",\"authors\":\"Lvtao Zhu, S. Cao, Xiaofeng Zhang, Lei Li\",\"doi\":\"10.2478/aut-2021-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The glass fiber reinforced resin matrix composite I-beams were designed and formed via a type of novel bending pultrusion processing technique, and the three-point bending tests were carried out to analyze the mechanical bending performances. The obtained results show that the main failure mode of the composite I-beam under the bending load is the upper structure (top flange) cracks along the length direction of the fibers, and the cracks simultaneously propagate downwards in the vertical direction. The bifurcated cracks can be found at the junction area between the top flange and web. In addition, the main bending failure mechanism of the composite I-beam includes the matrix cracking, propagation of cracks, and final fracture failure. In particular, noting that when the crack reaches the I-shaped neck position, the lateral bifurcation occurs, and the resulting secondary cracks further extend in two directions, which leads to the serious damage between the top flange and web, and the ultimate fracture failure occurs.\",\"PeriodicalId\":49104,\"journal\":{\"name\":\"Autex Research Journal\",\"volume\":\"22 1\",\"pages\":\"172 - 176\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autex Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2478/aut-2021-0005\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autex Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/aut-2021-0005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Bending Failure Behavior of the Glass Fiber Reinforced Composite I-Beams Formed by a Novel Bending Pultrusion Processing Technique
Abstract The glass fiber reinforced resin matrix composite I-beams were designed and formed via a type of novel bending pultrusion processing technique, and the three-point bending tests were carried out to analyze the mechanical bending performances. The obtained results show that the main failure mode of the composite I-beam under the bending load is the upper structure (top flange) cracks along the length direction of the fibers, and the cracks simultaneously propagate downwards in the vertical direction. The bifurcated cracks can be found at the junction area between the top flange and web. In addition, the main bending failure mechanism of the composite I-beam includes the matrix cracking, propagation of cracks, and final fracture failure. In particular, noting that when the crack reaches the I-shaped neck position, the lateral bifurcation occurs, and the resulting secondary cracks further extend in two directions, which leads to the serious damage between the top flange and web, and the ultimate fracture failure occurs.
期刊介绍:
Only few journals deal with textile research at an international and global level complying with the highest standards.
Autex Research Journal has the aim to play a leading role in distributing scientific and technological research results on textiles publishing original and innovative papers after peer reviewing, guaranteeing quality and excellence.
Everybody dedicated to textiles and textile related materials is invited to submit papers and to contribute to a positive and appealing image of this Journal.