{"title":"低温倒装用铟微凸块的制备及常压湿回流","authors":"Wen-Hui Zhu, Xiao-Yu Xiao, Zhuo Chen, Gui Chen, Ya-Mei Yan, Lian-Cheng Wang, Gang-Long Li","doi":"10.1007/s40436-022-00419-9","DOIUrl":null,"url":null,"abstract":"<div><p>An urgent demand for lowering bonding temperature has been put forward by advanced flip-chip integration such as micro-LED packaging and heterogeneous integration of semiconductor devices. Indium microbump with low-melting point has attracted attention for its potential use as the interconnection intermediate, and the development of its fabrication process is therefore of great attraction. To reveal the critical process factors for successfully fabricating a high-density In microbump array, this paper investigated a simple process flow of In patterning and reflow and detailed the flux-assisted wet reflow process. Critical process conditions, including the patterned In volume, alignment accuracy, reflow reagent liquidity, and temperature profile, were described, with a particular emphasis on the role of surface tension of molten indium film during the formation of spherical microbumps. A high-density indium ball array with an overall yield greater than 99.7% can be obtained, which suggests that the In patterning and wet-reflow processes are robust and that a high-quality microbump array could be readily formed with low equipment requirements. Furthermore, the interfacial reaction characteristics between In microbump and Au adhesion layer were investigated under thermal aging conditions, which revealed lateral intermetallic growth of AuIn<sub>2</sub> compound and well-retained interfacial strength even after prolonged aging.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 2","pages":"203 - 211"},"PeriodicalIF":4.2000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40436-022-00419-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Preparation and atmospheric wet-reflow of indium microbump for low-temperature flip-chip applications\",\"authors\":\"Wen-Hui Zhu, Xiao-Yu Xiao, Zhuo Chen, Gui Chen, Ya-Mei Yan, Lian-Cheng Wang, Gang-Long Li\",\"doi\":\"10.1007/s40436-022-00419-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An urgent demand for lowering bonding temperature has been put forward by advanced flip-chip integration such as micro-LED packaging and heterogeneous integration of semiconductor devices. Indium microbump with low-melting point has attracted attention for its potential use as the interconnection intermediate, and the development of its fabrication process is therefore of great attraction. To reveal the critical process factors for successfully fabricating a high-density In microbump array, this paper investigated a simple process flow of In patterning and reflow and detailed the flux-assisted wet reflow process. Critical process conditions, including the patterned In volume, alignment accuracy, reflow reagent liquidity, and temperature profile, were described, with a particular emphasis on the role of surface tension of molten indium film during the formation of spherical microbumps. A high-density indium ball array with an overall yield greater than 99.7% can be obtained, which suggests that the In patterning and wet-reflow processes are robust and that a high-quality microbump array could be readily formed with low equipment requirements. Furthermore, the interfacial reaction characteristics between In microbump and Au adhesion layer were investigated under thermal aging conditions, which revealed lateral intermetallic growth of AuIn<sub>2</sub> compound and well-retained interfacial strength even after prolonged aging.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"11 2\",\"pages\":\"203 - 211\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40436-022-00419-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-022-00419-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-022-00419-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Preparation and atmospheric wet-reflow of indium microbump for low-temperature flip-chip applications
An urgent demand for lowering bonding temperature has been put forward by advanced flip-chip integration such as micro-LED packaging and heterogeneous integration of semiconductor devices. Indium microbump with low-melting point has attracted attention for its potential use as the interconnection intermediate, and the development of its fabrication process is therefore of great attraction. To reveal the critical process factors for successfully fabricating a high-density In microbump array, this paper investigated a simple process flow of In patterning and reflow and detailed the flux-assisted wet reflow process. Critical process conditions, including the patterned In volume, alignment accuracy, reflow reagent liquidity, and temperature profile, were described, with a particular emphasis on the role of surface tension of molten indium film during the formation of spherical microbumps. A high-density indium ball array with an overall yield greater than 99.7% can be obtained, which suggests that the In patterning and wet-reflow processes are robust and that a high-quality microbump array could be readily formed with low equipment requirements. Furthermore, the interfacial reaction characteristics between In microbump and Au adhesion layer were investigated under thermal aging conditions, which revealed lateral intermetallic growth of AuIn2 compound and well-retained interfacial strength even after prolonged aging.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.