Jianing Li, Kelvin Lim, Swarup Das, T. Zanon-Willette, C. Feng, Paul Robert, A. Bertoldi, P. Bouyer, C. Kwong, Shau-Yu Lan, D. Wilkowski
{"title":"超冷气体的双色原子束慢化和磁场补偿","authors":"Jianing Li, Kelvin Lim, Swarup Das, T. Zanon-Willette, C. Feng, Paul Robert, A. Bertoldi, P. Bouyer, C. Kwong, Shau-Yu Lan, D. Wilkowski","doi":"10.1116/5.0126745","DOIUrl":null,"url":null,"abstract":"Transversely loaded bidimensional-magneto-optical-traps (2D-MOTs) have been recently developed as high flux sources for cold strontium atoms to realize a new generation of compact experimental setups. Here, we discuss on the implementation of a cross-polarized bi-color slower for a strontium atomic beam, improving the 2D-MOT loading and increasing the number of atoms up to [Formula: see text] atoms in the 461 nm MOT. Our slowing scheme addresses simultaneously two excited Zeeman substates of the 88Sr 1[Formula: see text]P1 transition at 461 nm. We also realized a three-axis active feedback control of the magnetic field down to the microgauss regime. Such a compensation is performed thanks to a network of eight magnetic field probes arranged in a cuboid configuration around the atomic cold sample and a pair of coils in a quasi-Helmholtz configuration along each of three Cartesian directions. Our active feedback is capable of efficiently suppressing most of the magnetically induced position fluctuations of the 689 nm intercombination-line MOT.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bi-color atomic beam slower and magnetic field compensation for ultracold gases\",\"authors\":\"Jianing Li, Kelvin Lim, Swarup Das, T. Zanon-Willette, C. Feng, Paul Robert, A. Bertoldi, P. Bouyer, C. Kwong, Shau-Yu Lan, D. Wilkowski\",\"doi\":\"10.1116/5.0126745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transversely loaded bidimensional-magneto-optical-traps (2D-MOTs) have been recently developed as high flux sources for cold strontium atoms to realize a new generation of compact experimental setups. Here, we discuss on the implementation of a cross-polarized bi-color slower for a strontium atomic beam, improving the 2D-MOT loading and increasing the number of atoms up to [Formula: see text] atoms in the 461 nm MOT. Our slowing scheme addresses simultaneously two excited Zeeman substates of the 88Sr 1[Formula: see text]P1 transition at 461 nm. We also realized a three-axis active feedback control of the magnetic field down to the microgauss regime. Such a compensation is performed thanks to a network of eight magnetic field probes arranged in a cuboid configuration around the atomic cold sample and a pair of coils in a quasi-Helmholtz configuration along each of three Cartesian directions. Our active feedback is capable of efficiently suppressing most of the magnetically induced position fluctuations of the 689 nm intercombination-line MOT.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0126745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0126745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Bi-color atomic beam slower and magnetic field compensation for ultracold gases
Transversely loaded bidimensional-magneto-optical-traps (2D-MOTs) have been recently developed as high flux sources for cold strontium atoms to realize a new generation of compact experimental setups. Here, we discuss on the implementation of a cross-polarized bi-color slower for a strontium atomic beam, improving the 2D-MOT loading and increasing the number of atoms up to [Formula: see text] atoms in the 461 nm MOT. Our slowing scheme addresses simultaneously two excited Zeeman substates of the 88Sr 1[Formula: see text]P1 transition at 461 nm. We also realized a three-axis active feedback control of the magnetic field down to the microgauss regime. Such a compensation is performed thanks to a network of eight magnetic field probes arranged in a cuboid configuration around the atomic cold sample and a pair of coils in a quasi-Helmholtz configuration along each of three Cartesian directions. Our active feedback is capable of efficiently suppressing most of the magnetically induced position fluctuations of the 689 nm intercombination-line MOT.