碱性纤维素酶在纸浆和纸张回收中的工业应用综述

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Cellulose Chemistry and Technology Pub Date : 2023-02-28 DOI:10.35812/cellulosechemtechnol.2023.57.02
A. Yakubu, A. Vyas
{"title":"碱性纤维素酶在纸浆和纸张回收中的工业应用综述","authors":"A. Yakubu, A. Vyas","doi":"10.35812/cellulosechemtechnol.2023.57.02","DOIUrl":null,"url":null,"abstract":"\"Industrial utilization of waste paper in the production of a new one is increasing globally. Currently, the pulp and paper industry is one of the largest consumers of wood. Based on the demand, due to global economic growth, an increasing number of trees are harvested each year, also leading to increased amounts of wastes and pollutants, which represent a serious hazard for the environment. Chemical agents, such as sodium hydroxide, hydrogen peroxide, sodium carbonate, diethylenetriaminepentacetic acid, sodium silicate and surfactants, are used in large quantities by paper industries as part of the conventional methods of deinking waste paper, leading to the need to apply expensive wastewater treatments in order to meet environmental regulations. On the other hand, enzymes, such as cellulase, lipase, xylanase, pectinase, hemicellulase, amylase and esterase, can substitute conventional chemical methods of deinking waste papers. These enzymes have been reported to be environmentally friendly, as compared to the chemicals involved in conventional methods. Several decades ago, it was established that microbial enzymes might be useful in the processing of paper, since it is composed of natural polymers, such as cellulose, hemicelluloses and lignin. However, despite their enormous potential, the industrial use of these enzymes is still limited, being affected by lack of microbial strains capable of generating a high amount of alkaline cellulase. This paper provides an insight into recent research performed with the objectives of optimizing alkaline cellulase enzymes production and applying them in pulp and paper processes.\"","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INDUSTRIAL APPLICATION OF ALKALINE CELLULASE ENZYMES IN PULP AND PAPER RECYCLING: A REVIEW\",\"authors\":\"A. Yakubu, A. Vyas\",\"doi\":\"10.35812/cellulosechemtechnol.2023.57.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Industrial utilization of waste paper in the production of a new one is increasing globally. Currently, the pulp and paper industry is one of the largest consumers of wood. Based on the demand, due to global economic growth, an increasing number of trees are harvested each year, also leading to increased amounts of wastes and pollutants, which represent a serious hazard for the environment. Chemical agents, such as sodium hydroxide, hydrogen peroxide, sodium carbonate, diethylenetriaminepentacetic acid, sodium silicate and surfactants, are used in large quantities by paper industries as part of the conventional methods of deinking waste paper, leading to the need to apply expensive wastewater treatments in order to meet environmental regulations. On the other hand, enzymes, such as cellulase, lipase, xylanase, pectinase, hemicellulase, amylase and esterase, can substitute conventional chemical methods of deinking waste papers. These enzymes have been reported to be environmentally friendly, as compared to the chemicals involved in conventional methods. Several decades ago, it was established that microbial enzymes might be useful in the processing of paper, since it is composed of natural polymers, such as cellulose, hemicelluloses and lignin. However, despite their enormous potential, the industrial use of these enzymes is still limited, being affected by lack of microbial strains capable of generating a high amount of alkaline cellulase. This paper provides an insight into recent research performed with the objectives of optimizing alkaline cellulase enzymes production and applying them in pulp and paper processes.\\\"\",\"PeriodicalId\":10130,\"journal\":{\"name\":\"Cellulose Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.35812/cellulosechemtechnol.2023.57.02\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.02","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

“在全球范围内,废纸的工业利用正在增加。目前,纸浆和造纸工业是木材的最大消费者之一。基于需求,由于全球经济的增长,每年越来越多的树木被采伐,也导致了废物和污染物的增加,这对环境构成了严重的危害。化学剂,如氢氧化钠、过氧化氢、碳酸钠、二乙烯三胺五乙酸、硅酸钠和表面活性剂,作为废纸脱墨的传统方法的一部分,被造纸工业大量使用,导致需要采用昂贵的废水处理,以满足环境法规。另一方面,纤维素酶、脂肪酶、木聚糖酶、果胶酶、半纤维素酶、淀粉酶和酯酶等酶可以代替传统的化学方法对废纸脱墨。据报道,与传统方法所涉及的化学物质相比,这些酶是环保的。几十年前,由于纸是由天然聚合物组成的,如纤维素、半纤维素和木质素,微生物酶可能在纸的加工中很有用。然而,尽管这些酶具有巨大的潜力,但由于缺乏能够产生大量碱性纤维素酶的微生物菌株,这些酶的工业应用仍然有限。本文提供了对最近的研究进行了深入的了解,其目标是优化碱性纤维素酶的生产并将其应用于纸浆和造纸过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
INDUSTRIAL APPLICATION OF ALKALINE CELLULASE ENZYMES IN PULP AND PAPER RECYCLING: A REVIEW
"Industrial utilization of waste paper in the production of a new one is increasing globally. Currently, the pulp and paper industry is one of the largest consumers of wood. Based on the demand, due to global economic growth, an increasing number of trees are harvested each year, also leading to increased amounts of wastes and pollutants, which represent a serious hazard for the environment. Chemical agents, such as sodium hydroxide, hydrogen peroxide, sodium carbonate, diethylenetriaminepentacetic acid, sodium silicate and surfactants, are used in large quantities by paper industries as part of the conventional methods of deinking waste paper, leading to the need to apply expensive wastewater treatments in order to meet environmental regulations. On the other hand, enzymes, such as cellulase, lipase, xylanase, pectinase, hemicellulase, amylase and esterase, can substitute conventional chemical methods of deinking waste papers. These enzymes have been reported to be environmentally friendly, as compared to the chemicals involved in conventional methods. Several decades ago, it was established that microbial enzymes might be useful in the processing of paper, since it is composed of natural polymers, such as cellulose, hemicelluloses and lignin. However, despite their enormous potential, the industrial use of these enzymes is still limited, being affected by lack of microbial strains capable of generating a high amount of alkaline cellulase. This paper provides an insight into recent research performed with the objectives of optimizing alkaline cellulase enzymes production and applying them in pulp and paper processes."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellulose Chemistry and Technology
Cellulose Chemistry and Technology 工程技术-材料科学:纸与木材
CiteScore
2.30
自引率
23.10%
发文量
81
审稿时长
7.3 months
期刊介绍: Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry. Topics include: • studies of structure and properties • biological and industrial development • analytical methods • chemical and microbiological modifications • interactions with other materials
期刊最新文献
WHITE-ROT FUNGAL PRETREATMENT OF WHEAT STRAW: EFFECT ON ENZYMATIC HYDROLYSIS OF CARBOHYDRATE POLYMERS EXTRACTION, CHARACTERIZATION AND KINETICS OF THERMAL DECOMPOSITION OF LIGNIN FROM DATE SEEDS USING MODEL-FREE AND FITTING APPROACHES EFFECT OF NATURAL DYES AND DIFFERENT MORDANT TREATMENTS ON ULTRA-VIOLET PROTECTION PROPERTY OF COTTON FABRIC A STUDY OF CELLULOSE AND LIGNIN EXTRACTED FROM SĀNCI BARK AND THEIR MODIFICATION EFFECT OF CELLULOSE NANOFIBERS FROM RED COCONUT PEDUNCLE WASTE AS REINFORCEMENT IN EPOXY COMPOSITE SHEETS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1