Hongyang Cheng, F. Anselmucci, Xinyan Fan, Yijian Zeng, S. Luding, V. Magnanimo
{"title":"深入到植被土壤的根源:挑战和最新技术","authors":"Hongyang Cheng, F. Anselmucci, Xinyan Fan, Yijian Zeng, S. Luding, V. Magnanimo","doi":"10.4279/pip.140014","DOIUrl":null,"url":null,"abstract":"Vegetated soil plays an essential role in confronting climate change. It is the host material where inorganic carbon is stored and green infrastructures are built. The expected impacts of climate change, such as extreme wetting-drying cycles, pose an urgent need to understand the interplay between soil deformation, root growth, and water/solute uptake. The key to this challenge lies in the extension of unsaturated soil mechanics to incorporate bio-hydrological processes, such as root growth and water uptake. In this paper, we first provide an overview of the state-of-the-art knowledge of root-zone mechanics and bio-hydrology. We identify the main knowledge gaps and suggest an integrated, bottom-to-top approach to develop a multidisciplinary understanding of soil-water-root interaction. We demonstrate how emerging experimental and numerical methods can be used to study rooted soil under wetting--drying cycles. Although focused on the biophysical processes at root/soil particle scales, we discuss potential up-scaling from the root to the field scale and further research on remaining challenges, such as the microbial activities in vegetated soil.","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Down to the root of vegetated soil: challenges and state-of-the-art\",\"authors\":\"Hongyang Cheng, F. Anselmucci, Xinyan Fan, Yijian Zeng, S. Luding, V. Magnanimo\",\"doi\":\"10.4279/pip.140014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vegetated soil plays an essential role in confronting climate change. It is the host material where inorganic carbon is stored and green infrastructures are built. The expected impacts of climate change, such as extreme wetting-drying cycles, pose an urgent need to understand the interplay between soil deformation, root growth, and water/solute uptake. The key to this challenge lies in the extension of unsaturated soil mechanics to incorporate bio-hydrological processes, such as root growth and water uptake. In this paper, we first provide an overview of the state-of-the-art knowledge of root-zone mechanics and bio-hydrology. We identify the main knowledge gaps and suggest an integrated, bottom-to-top approach to develop a multidisciplinary understanding of soil-water-root interaction. We demonstrate how emerging experimental and numerical methods can be used to study rooted soil under wetting--drying cycles. Although focused on the biophysical processes at root/soil particle scales, we discuss potential up-scaling from the root to the field scale and further research on remaining challenges, such as the microbial activities in vegetated soil.\",\"PeriodicalId\":19791,\"journal\":{\"name\":\"Papers in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Papers in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4279/pip.140014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.140014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Down to the root of vegetated soil: challenges and state-of-the-art
Vegetated soil plays an essential role in confronting climate change. It is the host material where inorganic carbon is stored and green infrastructures are built. The expected impacts of climate change, such as extreme wetting-drying cycles, pose an urgent need to understand the interplay between soil deformation, root growth, and water/solute uptake. The key to this challenge lies in the extension of unsaturated soil mechanics to incorporate bio-hydrological processes, such as root growth and water uptake. In this paper, we first provide an overview of the state-of-the-art knowledge of root-zone mechanics and bio-hydrology. We identify the main knowledge gaps and suggest an integrated, bottom-to-top approach to develop a multidisciplinary understanding of soil-water-root interaction. We demonstrate how emerging experimental and numerical methods can be used to study rooted soil under wetting--drying cycles. Although focused on the biophysical processes at root/soil particle scales, we discuss potential up-scaling from the root to the field scale and further research on remaining challenges, such as the microbial activities in vegetated soil.
期刊介绍:
Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.