Lihua Yin , Sixin Lin , Zhe Sun , Ran Li , Yuanyuan He , Zhiqiang Hao
{"title":"联邦学习的博弈论方法:隐私、准确性和能量之间的权衡","authors":"Lihua Yin , Sixin Lin , Zhe Sun , Ran Li , Yuanyuan He , Zhiqiang Hao","doi":"10.1016/j.dcan.2022.12.024","DOIUrl":null,"url":null,"abstract":"<div><p>Benefiting from the development of Federated Learning (FL) and distributed communication systems, large-scale intelligent applications become possible. Distributed devices not only provide adequate training data, but also cause privacy leakage and energy consumption. How to optimize the energy consumption in distributed communication systems, while ensuring the privacy of users and model accuracy, has become an urgent challenge. In this paper, we define the FL as a 3-layer architecture including users, agents and server. In order to find a balance among model training accuracy, privacy-preserving effect, and energy consumption, we design the training process of FL as game models. We use an extensive game tree to analyze the key elements that influence the players’ decisions in the single game, and then find the incentive mechanism that meet the social norms through the repeated game. The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality, and the proposed incentive mechanism can also promote users to submit high-quality data in FL. Following the multiple rounds of play, the incentive mechanism can help all players find the optimal strategies for energy, privacy, and accuracy of FL in distributed communication systems.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 2","pages":"Pages 389-403"},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864823000056/pdfft?md5=374271a26bf255f9eb9918a226a21d7c&pid=1-s2.0-S2352864823000056-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A game-theoretic approach for federated learning: A trade-off among privacy, accuracy and energy\",\"authors\":\"Lihua Yin , Sixin Lin , Zhe Sun , Ran Li , Yuanyuan He , Zhiqiang Hao\",\"doi\":\"10.1016/j.dcan.2022.12.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Benefiting from the development of Federated Learning (FL) and distributed communication systems, large-scale intelligent applications become possible. Distributed devices not only provide adequate training data, but also cause privacy leakage and energy consumption. How to optimize the energy consumption in distributed communication systems, while ensuring the privacy of users and model accuracy, has become an urgent challenge. In this paper, we define the FL as a 3-layer architecture including users, agents and server. In order to find a balance among model training accuracy, privacy-preserving effect, and energy consumption, we design the training process of FL as game models. We use an extensive game tree to analyze the key elements that influence the players’ decisions in the single game, and then find the incentive mechanism that meet the social norms through the repeated game. The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality, and the proposed incentive mechanism can also promote users to submit high-quality data in FL. Following the multiple rounds of play, the incentive mechanism can help all players find the optimal strategies for energy, privacy, and accuracy of FL in distributed communication systems.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"10 2\",\"pages\":\"Pages 389-403\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864823000056/pdfft?md5=374271a26bf255f9eb9918a226a21d7c&pid=1-s2.0-S2352864823000056-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823000056\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823000056","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A game-theoretic approach for federated learning: A trade-off among privacy, accuracy and energy
Benefiting from the development of Federated Learning (FL) and distributed communication systems, large-scale intelligent applications become possible. Distributed devices not only provide adequate training data, but also cause privacy leakage and energy consumption. How to optimize the energy consumption in distributed communication systems, while ensuring the privacy of users and model accuracy, has become an urgent challenge. In this paper, we define the FL as a 3-layer architecture including users, agents and server. In order to find a balance among model training accuracy, privacy-preserving effect, and energy consumption, we design the training process of FL as game models. We use an extensive game tree to analyze the key elements that influence the players’ decisions in the single game, and then find the incentive mechanism that meet the social norms through the repeated game. The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality, and the proposed incentive mechanism can also promote users to submit high-quality data in FL. Following the multiple rounds of play, the incentive mechanism can help all players find the optimal strategies for energy, privacy, and accuracy of FL in distributed communication systems.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.