基于二进制Owl优化器的物联网环境下网络数字取证新方法

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2022-09-01 DOI:10.2478/cait-2022-0033
Hadeel Alazzam, Orieb Abualghanam, Qusay M. Al-zoubi, Abdulsalam Alsmady, Esraa Alhenawi
{"title":"基于二进制Owl优化器的物联网环境下网络数字取证新方法","authors":"Hadeel Alazzam, Orieb Abualghanam, Qusay M. Al-zoubi, Abdulsalam Alsmady, Esraa Alhenawi","doi":"10.2478/cait-2022-0033","DOIUrl":null,"url":null,"abstract":"Abstract The Internet of Things (IoT) is widespread in our lives these days (e.g., Smart homes, smart cities, etc.). Despite its significant role in providing automatic real-time services to users, these devices are highly vulnerable due to their design simplicity and limitations regarding power, CPU, and memory. Tracing network traffic and investigating its behavior helps in building a digital forensics framework to secure IoT networks. This paper proposes a new Network Digital Forensics approach called (NDF IoT). The proposed approach uses the Owl optimizer for selecting the best subset of features that help in identifying suspicious behavior in such environments. The NDF IoT approach is evaluated using the Bot IoT UNSW dataset in terms of detection rate, false alarms, accuracy, and f-score. The approach being proposed has achieved 100% detection rate and 99.3% f-score and outperforms related works that used the same dataset while reducing the number of features to three features only.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Network Digital Forensics Approach for Internet of Things Environment Based on Binary Owl Optimizer\",\"authors\":\"Hadeel Alazzam, Orieb Abualghanam, Qusay M. Al-zoubi, Abdulsalam Alsmady, Esraa Alhenawi\",\"doi\":\"10.2478/cait-2022-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Internet of Things (IoT) is widespread in our lives these days (e.g., Smart homes, smart cities, etc.). Despite its significant role in providing automatic real-time services to users, these devices are highly vulnerable due to their design simplicity and limitations regarding power, CPU, and memory. Tracing network traffic and investigating its behavior helps in building a digital forensics framework to secure IoT networks. This paper proposes a new Network Digital Forensics approach called (NDF IoT). The proposed approach uses the Owl optimizer for selecting the best subset of features that help in identifying suspicious behavior in such environments. The NDF IoT approach is evaluated using the Bot IoT UNSW dataset in terms of detection rate, false alarms, accuracy, and f-score. The approach being proposed has achieved 100% detection rate and 99.3% f-score and outperforms related works that used the same dataset while reducing the number of features to three features only.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2022-0033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

摘要物联网(IoT)如今在我们的生活中广泛存在(例如,智能家居、智能城市等)。尽管它在为用户提供自动实时服务方面发挥着重要作用,但由于其设计简单以及电源、CPU和内存方面的限制,这些设备极易受到攻击。追踪网络流量并调查其行为有助于建立一个数字取证框架来保护物联网网络。本文提出了一种新的网络数字取证方法,称为(NDF-IoT)。所提出的方法使用Owl优化器来选择有助于识别此类环境中可疑行为的最佳特征子集。NDF-IoT方法使用Bot-IoT UNSW数据集在检测率、误报、准确性和f分数方面进行评估。所提出的方法实现了100%的检测率和99.3%的f-score,并优于使用相同数据集的相关工作,同时将特征数量减少到仅三个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Network Digital Forensics Approach for Internet of Things Environment Based on Binary Owl Optimizer
Abstract The Internet of Things (IoT) is widespread in our lives these days (e.g., Smart homes, smart cities, etc.). Despite its significant role in providing automatic real-time services to users, these devices are highly vulnerable due to their design simplicity and limitations regarding power, CPU, and memory. Tracing network traffic and investigating its behavior helps in building a digital forensics framework to secure IoT networks. This paper proposes a new Network Digital Forensics approach called (NDF IoT). The proposed approach uses the Owl optimizer for selecting the best subset of features that help in identifying suspicious behavior in such environments. The NDF IoT approach is evaluated using the Bot IoT UNSW dataset in terms of detection rate, false alarms, accuracy, and f-score. The approach being proposed has achieved 100% detection rate and 99.3% f-score and outperforms related works that used the same dataset while reducing the number of features to three features only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1