二氧化锰纳米催化剂中氧空位调控的研究进展

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Surveys from Asia Pub Date : 2023-06-16 DOI:10.1007/s10563-023-09402-1
Y. H. Zhou, X. X. Lei, J. Y. Zhou, D. L. Yan, B. Deng, Y. D. Liu, W. L. Xu
{"title":"二氧化锰纳米催化剂中氧空位调控的研究进展","authors":"Y. H. Zhou,&nbsp;X. X. Lei,&nbsp;J. Y. Zhou,&nbsp;D. L. Yan,&nbsp;B. Deng,&nbsp;Y. D. Liu,&nbsp;W. L. Xu","doi":"10.1007/s10563-023-09402-1","DOIUrl":null,"url":null,"abstract":"<div><p>Enhanced oxygen vacancy (V<sub>O</sub>) has been designated as an effective strategy to prepare high-performance MnO<sub>2</sub> nanocatalysts for the oxidation of volatile organic compounds (VOC) for thereof unbalanced electronic structure, and rapid electron transfer which may even reduce the reaction temperature down to room temperature. Herein, the effects of the V<sub>O</sub> on the catalytic performance of nano-sized MnO<sub>2</sub> were discussed by classifying the V<sub>O</sub> into surface-anchored and bulk-involved ones. Currently used introducing and modulating methods for V<sub>O</sub> including elemental doping, energetic particle bombardment, atmosphere heat treatment, mechanical chemistry, and redox methods are detailly reviewed. Corresponding regulating mechanisms for V<sub>O</sub> are expounded. Commonly used characterization methods including ESR, XPS, HRTEM, and UV-vis are reviewed. Furtherly, the unveiled question which is highly expected to be answered on V<sub>O</sub> of MnO<sub>2</sub> nanocatalysts is proposed. The purpose of this review is to present the current status of research on MnO<sub>2</sub> nanoparticles and to provide researchers with basic research ideas.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"27 4","pages":"319 - 331"},"PeriodicalIF":2.1000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in the Regulation of Oxygen Vacancies in MnO2 Nanocatalysts\",\"authors\":\"Y. H. Zhou,&nbsp;X. X. Lei,&nbsp;J. Y. Zhou,&nbsp;D. L. Yan,&nbsp;B. Deng,&nbsp;Y. D. Liu,&nbsp;W. L. Xu\",\"doi\":\"10.1007/s10563-023-09402-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enhanced oxygen vacancy (V<sub>O</sub>) has been designated as an effective strategy to prepare high-performance MnO<sub>2</sub> nanocatalysts for the oxidation of volatile organic compounds (VOC) for thereof unbalanced electronic structure, and rapid electron transfer which may even reduce the reaction temperature down to room temperature. Herein, the effects of the V<sub>O</sub> on the catalytic performance of nano-sized MnO<sub>2</sub> were discussed by classifying the V<sub>O</sub> into surface-anchored and bulk-involved ones. Currently used introducing and modulating methods for V<sub>O</sub> including elemental doping, energetic particle bombardment, atmosphere heat treatment, mechanical chemistry, and redox methods are detailly reviewed. Corresponding regulating mechanisms for V<sub>O</sub> are expounded. Commonly used characterization methods including ESR, XPS, HRTEM, and UV-vis are reviewed. Furtherly, the unveiled question which is highly expected to be answered on V<sub>O</sub> of MnO<sub>2</sub> nanocatalysts is proposed. The purpose of this review is to present the current status of research on MnO<sub>2</sub> nanoparticles and to provide researchers with basic research ideas.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":\"27 4\",\"pages\":\"319 - 331\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-023-09402-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-023-09402-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

增强氧空位(VO)由于其不平衡的电子结构和快速的电子转移,甚至可以将反应温度降低到室温,被认为是制备高性能二氧化锰纳米催化剂的有效策略。本文通过将VO分为表面锚定型和体积参与型,讨论了VO对纳米二氧化锰催化性能的影响。综述了目前常用的VO的引入和调制方法,包括元素掺杂、高能粒子轰击、气氛热处理、机械化学和氧化还原等方法。阐述了VO的相应调节机理。综述了ESR、XPS、HRTEM、UV-vis等常用的表征方法。在此基础上,提出了二氧化锰纳米催化剂的VO有待解决的问题。本文综述了二氧化锰纳米颗粒的研究现状,为研究人员提供基本的研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Advances in the Regulation of Oxygen Vacancies in MnO2 Nanocatalysts

Enhanced oxygen vacancy (VO) has been designated as an effective strategy to prepare high-performance MnO2 nanocatalysts for the oxidation of volatile organic compounds (VOC) for thereof unbalanced electronic structure, and rapid electron transfer which may even reduce the reaction temperature down to room temperature. Herein, the effects of the VO on the catalytic performance of nano-sized MnO2 were discussed by classifying the VO into surface-anchored and bulk-involved ones. Currently used introducing and modulating methods for VO including elemental doping, energetic particle bombardment, atmosphere heat treatment, mechanical chemistry, and redox methods are detailly reviewed. Corresponding regulating mechanisms for VO are expounded. Commonly used characterization methods including ESR, XPS, HRTEM, and UV-vis are reviewed. Furtherly, the unveiled question which is highly expected to be answered on VO of MnO2 nanocatalysts is proposed. The purpose of this review is to present the current status of research on MnO2 nanoparticles and to provide researchers with basic research ideas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Surveys from Asia
Catalysis Surveys from Asia 化学-物理化学
CiteScore
4.80
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.
期刊最新文献
Modified Montmorillonite Catalysed Ultrasonic Assisted one-pot Synthesis of Novel 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7H)-ones as Potential Anticancer Agents Oxidized-Sulfur Decorated Two-Dimensional Cobalt(II) Porphyrin Covalent Organic Framework as a Photocatalyst and Proof-on Action Study in Oxidative Cyclization of Thioamide In-situ/Operando Mössbauer Spectroscopic Investigations of Fe-involved Metal Hydroxide-Based OER Electrocatalysts A Review on Graphene Oxide-Based Ferrite Nanocomposites for Catalytic Applications Progress on the Catalysts for the Gas-Phase Carbonylation Synthesis of Dimethyl Carbonate from Methyl Nitrite and CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1