{"title":"虚拟网络功能链的自适应布局","authors":"B. K. Umrao, Dharmendar Kumar Yadav","doi":"10.2478/cait-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract Designing efficient and flexible approaches for placement of Virtual Network Function (VNF) chains is the main success of Network Function Virtualization (NFV). However, most current work considers the constant bandwidth and flow processing requirements while deploying the VNFs in the network. The constant (immutable) flow processing and bandwidth requirements become critical limitations in an NFV-enabled network with highly dynamic traffic flow. Therefore, bandwidth requirements and available resources of the Point-of-Presence (PoP) in the network change constantly. We present an adaptive model for placing VNF chains to overcome this limitation. At the same time, the proposed model minimizes the number of changes (i.e., re-allocation of VNFs) in the network. The experimental evaluation shows that the adaptive model can deliver stable network services. Moreover, it reduces the significant number of changes in the network and ensures flow performance.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APVNFC: Adaptive Placement of Virtual Network Function Chains\",\"authors\":\"B. K. Umrao, Dharmendar Kumar Yadav\",\"doi\":\"10.2478/cait-2023-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Designing efficient and flexible approaches for placement of Virtual Network Function (VNF) chains is the main success of Network Function Virtualization (NFV). However, most current work considers the constant bandwidth and flow processing requirements while deploying the VNFs in the network. The constant (immutable) flow processing and bandwidth requirements become critical limitations in an NFV-enabled network with highly dynamic traffic flow. Therefore, bandwidth requirements and available resources of the Point-of-Presence (PoP) in the network change constantly. We present an adaptive model for placing VNF chains to overcome this limitation. At the same time, the proposed model minimizes the number of changes (i.e., re-allocation of VNFs) in the network. The experimental evaluation shows that the adaptive model can deliver stable network services. Moreover, it reduces the significant number of changes in the network and ensures flow performance.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2023-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
APVNFC: Adaptive Placement of Virtual Network Function Chains
Abstract Designing efficient and flexible approaches for placement of Virtual Network Function (VNF) chains is the main success of Network Function Virtualization (NFV). However, most current work considers the constant bandwidth and flow processing requirements while deploying the VNFs in the network. The constant (immutable) flow processing and bandwidth requirements become critical limitations in an NFV-enabled network with highly dynamic traffic flow. Therefore, bandwidth requirements and available resources of the Point-of-Presence (PoP) in the network change constantly. We present an adaptive model for placing VNF chains to overcome this limitation. At the same time, the proposed model minimizes the number of changes (i.e., re-allocation of VNFs) in the network. The experimental evaluation shows that the adaptive model can deliver stable network services. Moreover, it reduces the significant number of changes in the network and ensures flow performance.