Cheol-Hu Kim, Dae-Gun Kim, Dae-Gun Kim, Phill-Seung Lee
{"title":"利用虚拟刺激指导鲤鱼的转弯行为","authors":"Cheol-Hu Kim, Dae-Gun Kim, Dae-Gun Kim, Phill-Seung Lee","doi":"10.12989/OSE.2017.7.1.039","DOIUrl":null,"url":null,"abstract":"Fishes detect various sensory stimuli, which may be used to direct their behavior. Especially, the visual and water flow detection information are critical for locating prey, predators, and school formation. In this study, we examined the specific role of these two different type of stimulation (vision and vibration) during the obstacle avoidance behavior of carp, Cyprinus carpio. When a visual obstacle was presented, the carp efficiently turned and swam away in the opposite direction. In contrast, vibration stimulation of the left or right side with a vibrator did not induce strong turning behavior. The vibrator only regulated the direction of turning when presented in combination with the visual obstacle. Our results provide first evidence on the innate capacity that dynamically coordinates visual and vibration signals in fish and give insights on the novel modulation method of fish behavior without training.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"7 1","pages":"39-51"},"PeriodicalIF":0.7000,"publicationDate":"2017-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Directing the turning behavior of carp using virtual stimulation\",\"authors\":\"Cheol-Hu Kim, Dae-Gun Kim, Dae-Gun Kim, Phill-Seung Lee\",\"doi\":\"10.12989/OSE.2017.7.1.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fishes detect various sensory stimuli, which may be used to direct their behavior. Especially, the visual and water flow detection information are critical for locating prey, predators, and school formation. In this study, we examined the specific role of these two different type of stimulation (vision and vibration) during the obstacle avoidance behavior of carp, Cyprinus carpio. When a visual obstacle was presented, the carp efficiently turned and swam away in the opposite direction. In contrast, vibration stimulation of the left or right side with a vibrator did not induce strong turning behavior. The vibrator only regulated the direction of turning when presented in combination with the visual obstacle. Our results provide first evidence on the innate capacity that dynamically coordinates visual and vibration signals in fish and give insights on the novel modulation method of fish behavior without training.\",\"PeriodicalId\":44219,\"journal\":{\"name\":\"Ocean Systems Engineering-An International Journal\",\"volume\":\"7 1\",\"pages\":\"39-51\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Systems Engineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2017.7.1.039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2017.7.1.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Directing the turning behavior of carp using virtual stimulation
Fishes detect various sensory stimuli, which may be used to direct their behavior. Especially, the visual and water flow detection information are critical for locating prey, predators, and school formation. In this study, we examined the specific role of these two different type of stimulation (vision and vibration) during the obstacle avoidance behavior of carp, Cyprinus carpio. When a visual obstacle was presented, the carp efficiently turned and swam away in the opposite direction. In contrast, vibration stimulation of the left or right side with a vibrator did not induce strong turning behavior. The vibrator only regulated the direction of turning when presented in combination with the visual obstacle. Our results provide first evidence on the innate capacity that dynamically coordinates visual and vibration signals in fish and give insights on the novel modulation method of fish behavior without training.
期刊介绍:
The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.