{"title":"自由对流中Buongiorno纳米流体的数值模拟:热泳动和布朗效应","authors":"Shatay Khatun, R. Nasrin","doi":"10.3329/jname.v18i2.54694","DOIUrl":null,"url":null,"abstract":"In this research, numerical modeling is conducted on free convective flow inside a trapezoidal domain with sinusoidal material and temperature allocations at both inclined boundaries using Buongiorno’s nanofluid. The model considers thermophoresis with Brownian activity effects taking place in the flow, temperature as well as concentration contours. Non-uniform nanoparticle solid concentration and temperature allocations have been imposed at both inclined surfaces. Top and bottom parallel surfaces have been kept as adiabatic. All the walls have been considered as no-slip and impermeable. The leading equations in addition border conditions are initially converted into a dimensionless pattern by a suitable similarity transformation and then resolved arithmetically employing the finite element technique with Galerkin’s residual. Buongiorno’s model of nanofluid on thermal and material transports, and flow structure has been investigated in detail. Outcomes have been displayed in the form of velocity, temperature, and concentration contours with various governing factors like Brownian action, Lewis number, Buoyancy relation, thermophoresis, Rayleigh number, Prandtl number, etc. Also, the rate of thermal transport has been calculated. The thermophoresis and Brownian effects on velocity, heat, and material fields are identified and finally, the flow, heat, and concentration controlling parameters for a specific material and thermal transport applications inside a trapezium-shaped cavity are obtained. Result demonstrates that the increase of Brownian action guides to enhance thermal transport by 34.75 and 34.27% for the right and left walls, respectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Numerical modeling of Buongiorno’s nanofluid on free convection: thermophoresis and Brownian effects\",\"authors\":\"Shatay Khatun, R. Nasrin\",\"doi\":\"10.3329/jname.v18i2.54694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, numerical modeling is conducted on free convective flow inside a trapezoidal domain with sinusoidal material and temperature allocations at both inclined boundaries using Buongiorno’s nanofluid. The model considers thermophoresis with Brownian activity effects taking place in the flow, temperature as well as concentration contours. Non-uniform nanoparticle solid concentration and temperature allocations have been imposed at both inclined surfaces. Top and bottom parallel surfaces have been kept as adiabatic. All the walls have been considered as no-slip and impermeable. The leading equations in addition border conditions are initially converted into a dimensionless pattern by a suitable similarity transformation and then resolved arithmetically employing the finite element technique with Galerkin’s residual. Buongiorno’s model of nanofluid on thermal and material transports, and flow structure has been investigated in detail. Outcomes have been displayed in the form of velocity, temperature, and concentration contours with various governing factors like Brownian action, Lewis number, Buoyancy relation, thermophoresis, Rayleigh number, Prandtl number, etc. Also, the rate of thermal transport has been calculated. The thermophoresis and Brownian effects on velocity, heat, and material fields are identified and finally, the flow, heat, and concentration controlling parameters for a specific material and thermal transport applications inside a trapezium-shaped cavity are obtained. Result demonstrates that the increase of Brownian action guides to enhance thermal transport by 34.75 and 34.27% for the right and left walls, respectively.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i2.54694\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.54694","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical modeling of Buongiorno’s nanofluid on free convection: thermophoresis and Brownian effects
In this research, numerical modeling is conducted on free convective flow inside a trapezoidal domain with sinusoidal material and temperature allocations at both inclined boundaries using Buongiorno’s nanofluid. The model considers thermophoresis with Brownian activity effects taking place in the flow, temperature as well as concentration contours. Non-uniform nanoparticle solid concentration and temperature allocations have been imposed at both inclined surfaces. Top and bottom parallel surfaces have been kept as adiabatic. All the walls have been considered as no-slip and impermeable. The leading equations in addition border conditions are initially converted into a dimensionless pattern by a suitable similarity transformation and then resolved arithmetically employing the finite element technique with Galerkin’s residual. Buongiorno’s model of nanofluid on thermal and material transports, and flow structure has been investigated in detail. Outcomes have been displayed in the form of velocity, temperature, and concentration contours with various governing factors like Brownian action, Lewis number, Buoyancy relation, thermophoresis, Rayleigh number, Prandtl number, etc. Also, the rate of thermal transport has been calculated. The thermophoresis and Brownian effects on velocity, heat, and material fields are identified and finally, the flow, heat, and concentration controlling parameters for a specific material and thermal transport applications inside a trapezium-shaped cavity are obtained. Result demonstrates that the increase of Brownian action guides to enhance thermal transport by 34.75 and 34.27% for the right and left walls, respectively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.