{"title":"化学学生在化学动力学中的概念困难和解决问题的行为,作为物理化学入门课程的组成部分","authors":"Charalampia Stroumpouli, Georgios Tsaparlis","doi":"10.1515/cti-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract The identification of undergraduate chemistry students’ conceptual difficulties and common mistakes with basic concepts and problems in chemical kinetics provided the aim for this study, which involved 2nd-year/4th semester students who had passed the chemical kinetics component of a physical chemistry course. The study involved the analysis, evaluation and interpretation of students’ answers to the final examination in chemical kinetics. Three achievement groups, for the various topics, were identified: Group A, high achievement (mean ≈ 85%): (a) the steps in a chain-reaction mechanism, (b) integrated 1st- and 2nd-order rate laws; and (c) the Lindemann–Hinshelwood mechanism. Group B, intermediate achievement (mean ≈ 74%): (a) half-life, (b) instantaneous rate and the extent of reaction variable (ξ), (c) the Michaelis–Menten mechanism, and (d) theoretical rate law not asking for a final formula. Group C, low achievement (mean ≈ 54%): (a) experimental rate law and the reaction rate constant on the basis of an experimental-data table, (b) extracting the theoretical rate law, and (c) the Arrhenius equation. Students’ errors and misconceptions have also been identified. Successful students tended to respond well to straightforward questions on the theory of the subject, but had difficulties when solving problems. It is essential that teachers understand the potential of their students, especially possible misconceptions they may hold, and the teaching approaches that may contribute to overcoming the student difficulties. Problems in chemical kinetics can be very demanding both in terms of algebraic manipulations and conceptually. Teaching should focus on problem solving, with the emphasis on students themselves trying to solve the problems.","PeriodicalId":93272,"journal":{"name":"Chemistry Teacher International : best practices in chemistry education","volume":"4 1","pages":"279 - 296"},"PeriodicalIF":2.2000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemistry students’ conceptual difficulties and problem solving behavior in chemical kinetics, as a component of an introductory physical chemistry course\",\"authors\":\"Charalampia Stroumpouli, Georgios Tsaparlis\",\"doi\":\"10.1515/cti-2022-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The identification of undergraduate chemistry students’ conceptual difficulties and common mistakes with basic concepts and problems in chemical kinetics provided the aim for this study, which involved 2nd-year/4th semester students who had passed the chemical kinetics component of a physical chemistry course. The study involved the analysis, evaluation and interpretation of students’ answers to the final examination in chemical kinetics. Three achievement groups, for the various topics, were identified: Group A, high achievement (mean ≈ 85%): (a) the steps in a chain-reaction mechanism, (b) integrated 1st- and 2nd-order rate laws; and (c) the Lindemann–Hinshelwood mechanism. Group B, intermediate achievement (mean ≈ 74%): (a) half-life, (b) instantaneous rate and the extent of reaction variable (ξ), (c) the Michaelis–Menten mechanism, and (d) theoretical rate law not asking for a final formula. Group C, low achievement (mean ≈ 54%): (a) experimental rate law and the reaction rate constant on the basis of an experimental-data table, (b) extracting the theoretical rate law, and (c) the Arrhenius equation. Students’ errors and misconceptions have also been identified. Successful students tended to respond well to straightforward questions on the theory of the subject, but had difficulties when solving problems. It is essential that teachers understand the potential of their students, especially possible misconceptions they may hold, and the teaching approaches that may contribute to overcoming the student difficulties. Problems in chemical kinetics can be very demanding both in terms of algebraic manipulations and conceptually. Teaching should focus on problem solving, with the emphasis on students themselves trying to solve the problems.\",\"PeriodicalId\":93272,\"journal\":{\"name\":\"Chemistry Teacher International : best practices in chemistry education\",\"volume\":\"4 1\",\"pages\":\"279 - 296\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Teacher International : best practices in chemistry education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cti-2022-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Teacher International : best practices in chemistry education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cti-2022-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Chemistry students’ conceptual difficulties and problem solving behavior in chemical kinetics, as a component of an introductory physical chemistry course
Abstract The identification of undergraduate chemistry students’ conceptual difficulties and common mistakes with basic concepts and problems in chemical kinetics provided the aim for this study, which involved 2nd-year/4th semester students who had passed the chemical kinetics component of a physical chemistry course. The study involved the analysis, evaluation and interpretation of students’ answers to the final examination in chemical kinetics. Three achievement groups, for the various topics, were identified: Group A, high achievement (mean ≈ 85%): (a) the steps in a chain-reaction mechanism, (b) integrated 1st- and 2nd-order rate laws; and (c) the Lindemann–Hinshelwood mechanism. Group B, intermediate achievement (mean ≈ 74%): (a) half-life, (b) instantaneous rate and the extent of reaction variable (ξ), (c) the Michaelis–Menten mechanism, and (d) theoretical rate law not asking for a final formula. Group C, low achievement (mean ≈ 54%): (a) experimental rate law and the reaction rate constant on the basis of an experimental-data table, (b) extracting the theoretical rate law, and (c) the Arrhenius equation. Students’ errors and misconceptions have also been identified. Successful students tended to respond well to straightforward questions on the theory of the subject, but had difficulties when solving problems. It is essential that teachers understand the potential of their students, especially possible misconceptions they may hold, and the teaching approaches that may contribute to overcoming the student difficulties. Problems in chemical kinetics can be very demanding both in terms of algebraic manipulations and conceptually. Teaching should focus on problem solving, with the emphasis on students themselves trying to solve the problems.