5G和B5G移动网络毫米波/次太赫兹通信链路性能分析

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Frequenz Pub Date : 2023-07-25 DOI:10.1515/freq-2023-0024
Umer Farooq, A. Lokam
{"title":"5G和B5G移动网络毫米波/次太赫兹通信链路性能分析","authors":"Umer Farooq, A. Lokam","doi":"10.1515/freq-2023-0024","DOIUrl":null,"url":null,"abstract":"Abstract Millimeter (mmWave) and sub-terahertz communication is a key technology to support high data rate requirements of 5G and B5G mobile networks. However this field is still in its initial development stage because of the various technical difficulties in its practical implementation due to inherently distinct propagation properties of mmWave/sub-terahertz frequencies. A thorough investigation of mmWave/sub-terahertz communication link is required in order to successfully deploy these frequency bands in 5G and B5G mobile networks. This paper investigates the effect of atmospheric conditions like dry air, humidity, rain, snow, fog and foliage on the performance of the mmWave/sub-terahertz link. The work also presents a mathematical analysis of the coverage of mmWave/sub-terahertz communication link and investigates the effect of various parameters like frequency, bandwidth, transceiver antenna gain, path loss coefficient (LOS, NLOS case) and system noise on its performance.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of mmWave/sub-terahertz communication link for 5G and B5G mobile networks\",\"authors\":\"Umer Farooq, A. Lokam\",\"doi\":\"10.1515/freq-2023-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Millimeter (mmWave) and sub-terahertz communication is a key technology to support high data rate requirements of 5G and B5G mobile networks. However this field is still in its initial development stage because of the various technical difficulties in its practical implementation due to inherently distinct propagation properties of mmWave/sub-terahertz frequencies. A thorough investigation of mmWave/sub-terahertz communication link is required in order to successfully deploy these frequency bands in 5G and B5G mobile networks. This paper investigates the effect of atmospheric conditions like dry air, humidity, rain, snow, fog and foliage on the performance of the mmWave/sub-terahertz link. The work also presents a mathematical analysis of the coverage of mmWave/sub-terahertz communication link and investigates the effect of various parameters like frequency, bandwidth, transceiver antenna gain, path loss coefficient (LOS, NLOS case) and system noise on its performance.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2023-0024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要毫米波和亚太赫兹通信是支持5G和B5G移动网络高数据速率要求的关键技术。然而,由于毫米波/亚太赫兹频率固有的不同传播特性,该领域在实际实施中存在各种技术困难,因此仍处于初始开发阶段。为了在5G和B5G移动网络中成功部署这些频段,需要对毫米波/亚太赫兹通信链路进行彻底的研究。本文研究了干燥空气、湿度、雨、雪、雾和树叶等大气条件对毫米波/亚太赫兹链路性能的影响。该工作还对毫米波/亚太赫兹通信链路的覆盖范围进行了数学分析,并研究了频率、带宽、收发器天线增益、路径损耗系数(LOS,NLOS情况)和系统噪声等各种参数对其性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance analysis of mmWave/sub-terahertz communication link for 5G and B5G mobile networks
Abstract Millimeter (mmWave) and sub-terahertz communication is a key technology to support high data rate requirements of 5G and B5G mobile networks. However this field is still in its initial development stage because of the various technical difficulties in its practical implementation due to inherently distinct propagation properties of mmWave/sub-terahertz frequencies. A thorough investigation of mmWave/sub-terahertz communication link is required in order to successfully deploy these frequency bands in 5G and B5G mobile networks. This paper investigates the effect of atmospheric conditions like dry air, humidity, rain, snow, fog and foliage on the performance of the mmWave/sub-terahertz link. The work also presents a mathematical analysis of the coverage of mmWave/sub-terahertz communication link and investigates the effect of various parameters like frequency, bandwidth, transceiver antenna gain, path loss coefficient (LOS, NLOS case) and system noise on its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frequenz
Frequenz 工程技术-工程:电子与电气
CiteScore
2.40
自引率
18.20%
发文量
81
审稿时长
3 months
期刊介绍: Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal. Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies. RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.
期刊最新文献
A wideband folded reflectarray antenna with a 3-D printed circularly polarized converter High-selectivity wideband bandpass filter based on quintuple-mode stub-loaded resonator and defected ground structures Wideband circularly polarized reconfigurable metasurface antenna for 5G applications Designing an ultra-wideband directional antipodal Vivaldi antenna with U-slots for biomedical applications using an optimized attention network An AMC-based low-RCS conformal phased array design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1