微电子封装压缩成型飞模减缓的数值研究

M. Dreissigacker, O. Hoelck, J. Bauer, T. Braun, K. Becker, M. Schneider-Ramelow, K. Lang
{"title":"微电子封装压缩成型飞模减缓的数值研究","authors":"M. Dreissigacker, O. Hoelck, J. Bauer, T. Braun, K. Becker, M. Schneider-Ramelow, K. Lang","doi":"10.4071/2380-4505-2018.1.000355","DOIUrl":null,"url":null,"abstract":"\n Compression molding with liquid encapsulants is a crucial process in microelectronic packaging. Material properties of highly filled systems of reactive epoxy molding compounds depend on process conditions in a complex manner, such as shear-thinning behavior, which is superimposed by a time- and temperature-dependent conversion rate, both strongly affecting viscosity. The focus is set on forces exerted on individual dice during encapsulation in fan-out wafer-level packaging (FOWLP). The presented framework consists of an analytical approach to calculate the melt front velocity and simulations carried out to capture the nonlinear kinematics, chemorheology, and to extract forces exerted on individual dice. It offers separate evaluation of pressure and shear contributions for two cases, 0° and 45° between the dice' frontal area and the melt front. Process parameters, such as compression speed, thus cycle time, and process temperature, are determined to keep the forces on the dice below the critical level, where drag forces exceed adhesive forces. As a result, process parameters are determined to minimize flying dice and thereby maximize yield. The approach is easily transferable to arbitrary geometries and is therefore well suited to face the challenges that come with the current efforts toward the transition from FOWLP to larger substrates.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Numerical Study on Mitigation of Flying Dies in Compression Molding of Microelectronic Packages\",\"authors\":\"M. Dreissigacker, O. Hoelck, J. Bauer, T. Braun, K. Becker, M. Schneider-Ramelow, K. Lang\",\"doi\":\"10.4071/2380-4505-2018.1.000355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Compression molding with liquid encapsulants is a crucial process in microelectronic packaging. Material properties of highly filled systems of reactive epoxy molding compounds depend on process conditions in a complex manner, such as shear-thinning behavior, which is superimposed by a time- and temperature-dependent conversion rate, both strongly affecting viscosity. The focus is set on forces exerted on individual dice during encapsulation in fan-out wafer-level packaging (FOWLP). The presented framework consists of an analytical approach to calculate the melt front velocity and simulations carried out to capture the nonlinear kinematics, chemorheology, and to extract forces exerted on individual dice. It offers separate evaluation of pressure and shear contributions for two cases, 0° and 45° between the dice' frontal area and the melt front. Process parameters, such as compression speed, thus cycle time, and process temperature, are determined to keep the forces on the dice below the critical level, where drag forces exceed adhesive forces. As a result, process parameters are determined to minimize flying dice and thereby maximize yield. The approach is easily transferable to arbitrary geometries and is therefore well suited to face the challenges that come with the current efforts toward the transition from FOWLP to larger substrates.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/2380-4505-2018.1.000355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2018.1.000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

液体封装压缩成型是微电子封装的关键工艺。反应性环氧成型化合物的高填充体系的材料性能以复杂的方式取决于工艺条件,例如剪切变薄行为,这是由时间和温度相关的转化率叠加而成的,两者都强烈影响粘度。重点是在扇形晶圆级封装(FOWLP)封装期间施加在单个骰子上的力。提出的框架包括计算熔体前沿速度的分析方法和模拟,以捕获非线性运动学,化学流变学,并提取施加在单个骰子上的力。它提供了两种情况下的压力和剪切贡献的单独评估,骰子的锋面区域和熔体锋面之间的0°和45°。工艺参数,如压缩速度,因此循环时间和工艺温度,是确定的,以保持对骰子的力低于临界水平,其中阻力超过附着力。因此,确定工艺参数以尽量减少飞骰子,从而最大限度地提高产量。该方法很容易转移到任意几何形状,因此非常适合面对当前从FOWLP向更大基板过渡所带来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Numerical Study on Mitigation of Flying Dies in Compression Molding of Microelectronic Packages
Compression molding with liquid encapsulants is a crucial process in microelectronic packaging. Material properties of highly filled systems of reactive epoxy molding compounds depend on process conditions in a complex manner, such as shear-thinning behavior, which is superimposed by a time- and temperature-dependent conversion rate, both strongly affecting viscosity. The focus is set on forces exerted on individual dice during encapsulation in fan-out wafer-level packaging (FOWLP). The presented framework consists of an analytical approach to calculate the melt front velocity and simulations carried out to capture the nonlinear kinematics, chemorheology, and to extract forces exerted on individual dice. It offers separate evaluation of pressure and shear contributions for two cases, 0° and 45° between the dice' frontal area and the melt front. Process parameters, such as compression speed, thus cycle time, and process temperature, are determined to keep the forces on the dice below the critical level, where drag forces exceed adhesive forces. As a result, process parameters are determined to minimize flying dice and thereby maximize yield. The approach is easily transferable to arbitrary geometries and is therefore well suited to face the challenges that come with the current efforts toward the transition from FOWLP to larger substrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectronics and Electronic Packaging
Journal of Microelectronics and Electronic Packaging Engineering-Electrical and Electronic Engineering
CiteScore
1.30
自引率
0.00%
发文量
5
期刊介绍: The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.
期刊最新文献
Study on the Manufacturability of X Dimension Fan Out Integration Package with Organic RDLs (XDFOI-O) AlGaN High Electron Mobility Transistor for High-Temperature Logic A Novel Approach for Characterizing Epoxy Mold Compound High Temperature Swelling Dual-Band Dual-Polarized Antennas for 5G mmWave Base Stations An Evaluation on the Mechanical and Conductive Performance of Electrically Conductive Film Adhesives with Glass Fabric Carriers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1