基于Mask-RCNN的茶叶采摘点检测与定位

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Information Processing in Agriculture Pub Date : 2023-06-01 DOI:10.1016/j.inpa.2021.12.004
Tao Wang , Kunming Zhang , Wu Zhang , Ruiqing Wang , Shengmin Wan , Yuan Rao , Zhaohui Jiang , Lichuan Gu
{"title":"基于Mask-RCNN的茶叶采摘点检测与定位","authors":"Tao Wang ,&nbsp;Kunming Zhang ,&nbsp;Wu Zhang ,&nbsp;Ruiqing Wang ,&nbsp;Shengmin Wan ,&nbsp;Yuan Rao ,&nbsp;Zhaohui Jiang ,&nbsp;Lichuan Gu","doi":"10.1016/j.inpa.2021.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate identification, detection, and segmentation of tea buds and leaves are important factors for realizing intelligent tea picking. A tea picking point location method based on the region-based convolutional neural network(R-CNN) Mask- RCNN is proposed, and a tea bud and leaf and picking point recognition model is established. First, tea buds and leaf pictures are collected in a complex environment, the Resnet50 residual network and a feature pyramid network (FPN) are used to extract bud and leaf features, and preliminary classification and preselection box regression training-performed on the feature maps through a regional proposal network (RPN). Second, the regional feature aggregation method (RoIAlign) is used to eliminate the quantization error, and the feature map of the preselected region of interest (ROI) is converted into a fixed-size feature map. The output module of the model realizes the functions of classification, regression and segmentation. Finally, through the output mask image and the positioning algorithm the positioning of the picking points of tea buds and leaves is determined. One hundred tea tree bud and leaf pictures in a complex environment are selected for testing. The experimental results show that the average detection accuracy rate reaches 93.95% and that the recall rate reaches 92.48%. The tea picking location method presented in this paper is more versatile and robust in complex environments.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Tea picking point detection and location based on Mask-RCNN\",\"authors\":\"Tao Wang ,&nbsp;Kunming Zhang ,&nbsp;Wu Zhang ,&nbsp;Ruiqing Wang ,&nbsp;Shengmin Wan ,&nbsp;Yuan Rao ,&nbsp;Zhaohui Jiang ,&nbsp;Lichuan Gu\",\"doi\":\"10.1016/j.inpa.2021.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The accurate identification, detection, and segmentation of tea buds and leaves are important factors for realizing intelligent tea picking. A tea picking point location method based on the region-based convolutional neural network(R-CNN) Mask- RCNN is proposed, and a tea bud and leaf and picking point recognition model is established. First, tea buds and leaf pictures are collected in a complex environment, the Resnet50 residual network and a feature pyramid network (FPN) are used to extract bud and leaf features, and preliminary classification and preselection box regression training-performed on the feature maps through a regional proposal network (RPN). Second, the regional feature aggregation method (RoIAlign) is used to eliminate the quantization error, and the feature map of the preselected region of interest (ROI) is converted into a fixed-size feature map. The output module of the model realizes the functions of classification, regression and segmentation. Finally, through the output mask image and the positioning algorithm the positioning of the picking points of tea buds and leaves is determined. One hundred tea tree bud and leaf pictures in a complex environment are selected for testing. The experimental results show that the average detection accuracy rate reaches 93.95% and that the recall rate reaches 92.48%. The tea picking location method presented in this paper is more versatile and robust in complex environments.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

摘要

茶叶芽叶的准确识别、检测和分割是实现智能采茶的重要因素。提出了一种基于区域卷积神经网络(R-CNN) Mask- RCNN的茶叶采摘点定位方法,建立了茶叶芽、茶叶和采摘点识别模型。首先,在复杂环境中采集茶叶花蕾和茶叶图片,利用Resnet50残差网络和特征金字塔网络(FPN)提取花蕾和茶叶特征,并通过区域建议网络(RPN)对特征图进行初步分类和预选盒回归训练。其次,采用区域特征聚合方法(RoIAlign)消除量化误差,将预选感兴趣区域(ROI)的特征映射转换为固定大小的特征映射;模型的输出模块实现了分类、回归和分割的功能。最后,通过输出的掩模图像和定位算法确定茶叶芽和茶叶采摘点的定位。选取复杂环境下的100棵茶树芽叶图片进行测试。实验结果表明,平均检测准确率达到93.95%,召回率达到92.48%。本文提出的采茶定位方法在复杂环境下具有更强的通用性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tea picking point detection and location based on Mask-RCNN

The accurate identification, detection, and segmentation of tea buds and leaves are important factors for realizing intelligent tea picking. A tea picking point location method based on the region-based convolutional neural network(R-CNN) Mask- RCNN is proposed, and a tea bud and leaf and picking point recognition model is established. First, tea buds and leaf pictures are collected in a complex environment, the Resnet50 residual network and a feature pyramid network (FPN) are used to extract bud and leaf features, and preliminary classification and preselection box regression training-performed on the feature maps through a regional proposal network (RPN). Second, the regional feature aggregation method (RoIAlign) is used to eliminate the quantization error, and the feature map of the preselected region of interest (ROI) is converted into a fixed-size feature map. The output module of the model realizes the functions of classification, regression and segmentation. Finally, through the output mask image and the positioning algorithm the positioning of the picking points of tea buds and leaves is determined. One hundred tea tree bud and leaf pictures in a complex environment are selected for testing. The experimental results show that the average detection accuracy rate reaches 93.95% and that the recall rate reaches 92.48%. The tea picking location method presented in this paper is more versatile and robust in complex environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
期刊最新文献
Editorial Board Disturbance rejection control method of agricultural quadrotor based on adaptive neural network Deep learning for rice leaf disease detection: A systematic literature review on emerging trends, methodologies and techniques A deep learning framework for prediction of crop yield in Australia under the impact of climate change Few-shot cow identification via meta-learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1