单分子水平的G蛋白偶联受体药理学。

IF 11.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Annual review of pharmacology and toxicology Pub Date : 2020-01-08 DOI:10.1146/annurev-pharmtox-010919-023348
D. Calebiro, J. Grimes
{"title":"单分子水平的G蛋白偶联受体药理学。","authors":"D. Calebiro, J. Grimes","doi":"10.1146/annurev-pharmtox-010919-023348","DOIUrl":null,"url":null,"abstract":"G protein-coupled receptors (GPCRs) mediate the effects of numerous hormones and neurotransmitters and are major pharmacological targets. Classical studies with crude cell lysates or membrane preparations have identified the main biochemical steps involved in GPCR signaling. Moreover, recent studies on purified proteins have provided astounding details at the atomic level of the 3-D structures of receptors in multiple conformations, including in complex with G proteins and β-arrestins. However, several fundamental questions remain regarding the highly specific effects and rapid nature of GPCR signaling. Recent developments in single-molecule microscopy are providing important contributions to answering these questions. Overall, single-molecule studies have revealed unexpected levels of complexity, with receptors existing in different conformations and dynamically interacting among themselves, their signaling partners, and structural elements of the plasma membrane to produce highly localized signals in space and time. These findings may provide a new basis to develop innovative strategies to modulate GPCR function for pharmacological purposes. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 60 is January 6, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":" ","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2020-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-pharmtox-010919-023348","citationCount":"14","resultStr":"{\"title\":\"G Protein-Coupled Receptor Pharmacology at the Single-Molecule Level.\",\"authors\":\"D. Calebiro, J. Grimes\",\"doi\":\"10.1146/annurev-pharmtox-010919-023348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"G protein-coupled receptors (GPCRs) mediate the effects of numerous hormones and neurotransmitters and are major pharmacological targets. Classical studies with crude cell lysates or membrane preparations have identified the main biochemical steps involved in GPCR signaling. Moreover, recent studies on purified proteins have provided astounding details at the atomic level of the 3-D structures of receptors in multiple conformations, including in complex with G proteins and β-arrestins. However, several fundamental questions remain regarding the highly specific effects and rapid nature of GPCR signaling. Recent developments in single-molecule microscopy are providing important contributions to answering these questions. Overall, single-molecule studies have revealed unexpected levels of complexity, with receptors existing in different conformations and dynamically interacting among themselves, their signaling partners, and structural elements of the plasma membrane to produce highly localized signals in space and time. These findings may provide a new basis to develop innovative strategies to modulate GPCR function for pharmacological purposes. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 60 is January 6, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8057,\"journal\":{\"name\":\"Annual review of pharmacology and toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2020-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-pharmtox-010919-023348\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of pharmacology and toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-pharmtox-010919-023348\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of pharmacology and toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-pharmtox-010919-023348","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 14

摘要

G蛋白偶联受体(gpcr)介导多种激素和神经递质的作用,是主要的药理靶点。用粗细胞裂解物或膜制剂进行的经典研究已经确定了参与GPCR信号传导的主要生化步骤。此外,最近对纯化蛋白的研究已经在原子水平上提供了多种构象受体的三维结构的惊人细节,包括与G蛋白和β-抑制蛋白的复合物。然而,关于GPCR信号的高特异性作用和快速性质,仍然存在几个基本问题。单分子显微镜的最新发展为回答这些问题提供了重要的贡献。总的来说,单分子研究揭示了意想不到的复杂性,受体以不同的构象存在,并在它们自己、它们的信号伙伴和质膜的结构元件之间动态相互作用,在空间和时间上产生高度局部化的信号。这些发现可能为开发用于药理目的的调节GPCR功能的创新策略提供新的基础。《药理学和毒理学年度评论》第60卷的最终在线出版日期预计为2020年1月6日。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
G Protein-Coupled Receptor Pharmacology at the Single-Molecule Level.
G protein-coupled receptors (GPCRs) mediate the effects of numerous hormones and neurotransmitters and are major pharmacological targets. Classical studies with crude cell lysates or membrane preparations have identified the main biochemical steps involved in GPCR signaling. Moreover, recent studies on purified proteins have provided astounding details at the atomic level of the 3-D structures of receptors in multiple conformations, including in complex with G proteins and β-arrestins. However, several fundamental questions remain regarding the highly specific effects and rapid nature of GPCR signaling. Recent developments in single-molecule microscopy are providing important contributions to answering these questions. Overall, single-molecule studies have revealed unexpected levels of complexity, with receptors existing in different conformations and dynamically interacting among themselves, their signaling partners, and structural elements of the plasma membrane to produce highly localized signals in space and time. These findings may provide a new basis to develop innovative strategies to modulate GPCR function for pharmacological purposes. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 60 is January 6, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
27.80
自引率
0.00%
发文量
53
期刊介绍: Since 1961, the Annual Review of Pharmacology and Toxicology has been a comprehensive resource covering significant developments in pharmacology and toxicology. The journal encompasses various aspects, including receptors, transporters, enzymes, chemical agents, drug development science, and systems like the immune, nervous, gastrointestinal, cardiovascular, endocrine, and pulmonary systems. Special topics are also featured in this annual review.
期刊最新文献
How Biologics Have Changed the Drug Discovery Landscape. Inhibitors of Intracellular RyR2 Calcium Release Channels as Therapeutic Agents in Arrhythmogenic Heart Diseases. Targeting Neuroplasticity in Substance Use Disorders: Implications for Therapeutics. Evolving Approaches for Pharmacological Therapy of Obesity. Genetically Enriched Clinical Trials for Precision Development of Noncancer Therapeutics: A Scoping Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1