基于体积惩罚的浸没边界法计算机翼前缘噪声的气动声学

IF 1.2 4区 工程技术 Q3 ACOUSTICS International Journal of Aeroacoustics Pub Date : 2022-03-01 DOI:10.1177/1475472X221079557
Wei Ying, R. Fattah, Sinforiano Cantos, Siyang Zhong, Tatiana Kozubskaya
{"title":"基于体积惩罚的浸没边界法计算机翼前缘噪声的气动声学","authors":"Wei Ying, R. Fattah, Sinforiano Cantos, Siyang Zhong, Tatiana Kozubskaya","doi":"10.1177/1475472X221079557","DOIUrl":null,"url":null,"abstract":"Broadband noise due to the turbulence-aerofoil interaction, which is also called the leading edge noise, is one of the major noise sources of aircraft (including the engine). To study the noise properties numerically is a popular approach with the increasing power of computers. Conventional approaches of using body-fitted grids at the boundaries would be convoluted due to the complex geometries, which can constrain the efficiency of parametric studies. A promising approach to tackle this issue is to use the immersed boundary method (IBM). Among various IBM variants, the volume penalization (VP) approach employs a masking function to identify the immersed solid boundary, and continuous forcing terms are added to the original flow governing equations to account for the boundary conditions. It is, therefore, efficient and easy to implement into the existing computational aeroacoustics solvers. In this work, the VP-based IBM is used to simulate the leading edge noise by combining with the advanced synthetic turbulence method. The simulations are conducted for both the isolated aerofoils and cascade, and the results are compared with the well-validated body-fitted grid solutions. The viscosity effect is also highlighted by comparing the results obtained by solving both Euler and Navier–Stokes equations.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational aeroacoustics of aerofoil leading edge noise using the volume penalization-based immersed boundary methods\",\"authors\":\"Wei Ying, R. Fattah, Sinforiano Cantos, Siyang Zhong, Tatiana Kozubskaya\",\"doi\":\"10.1177/1475472X221079557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Broadband noise due to the turbulence-aerofoil interaction, which is also called the leading edge noise, is one of the major noise sources of aircraft (including the engine). To study the noise properties numerically is a popular approach with the increasing power of computers. Conventional approaches of using body-fitted grids at the boundaries would be convoluted due to the complex geometries, which can constrain the efficiency of parametric studies. A promising approach to tackle this issue is to use the immersed boundary method (IBM). Among various IBM variants, the volume penalization (VP) approach employs a masking function to identify the immersed solid boundary, and continuous forcing terms are added to the original flow governing equations to account for the boundary conditions. It is, therefore, efficient and easy to implement into the existing computational aeroacoustics solvers. In this work, the VP-based IBM is used to simulate the leading edge noise by combining with the advanced synthetic turbulence method. The simulations are conducted for both the isolated aerofoils and cascade, and the results are compared with the well-validated body-fitted grid solutions. The viscosity effect is also highlighted by comparing the results obtained by solving both Euler and Navier–Stokes equations.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472X221079557\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X221079557","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

湍流-机翼相互作用产生的宽带噪声,也称为前缘噪声,是飞机(包括发动机)的主要噪声源之一。随着计算机的日益强大,对噪声特性进行数值研究是一种流行的方法。由于复杂的几何形状,在边界处使用贴体网格的传统方法将是复杂的,这可能会限制参数研究的效率。解决这个问题的一个很有前途的方法是使用浸入边界法(IBM)。在各种IBM变体中,体积惩罚(VP)方法采用掩蔽函数来识别浸没的固体边界,并将连续强迫项添加到原始流量控制方程中以考虑边界条件。因此,它高效且易于在现有的计算空气声学求解器中实现。在这项工作中,使用基于VP的IBM,结合先进的合成湍流方法来模拟前缘噪声。对孤立翼型和叶栅进行了模拟,并将结果与验证良好的贴体网格解决方案进行了比较。通过比较求解Euler和Navier-Stokes方程的结果,也突出了粘度效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational aeroacoustics of aerofoil leading edge noise using the volume penalization-based immersed boundary methods
Broadband noise due to the turbulence-aerofoil interaction, which is also called the leading edge noise, is one of the major noise sources of aircraft (including the engine). To study the noise properties numerically is a popular approach with the increasing power of computers. Conventional approaches of using body-fitted grids at the boundaries would be convoluted due to the complex geometries, which can constrain the efficiency of parametric studies. A promising approach to tackle this issue is to use the immersed boundary method (IBM). Among various IBM variants, the volume penalization (VP) approach employs a masking function to identify the immersed solid boundary, and continuous forcing terms are added to the original flow governing equations to account for the boundary conditions. It is, therefore, efficient and easy to implement into the existing computational aeroacoustics solvers. In this work, the VP-based IBM is used to simulate the leading edge noise by combining with the advanced synthetic turbulence method. The simulations are conducted for both the isolated aerofoils and cascade, and the results are compared with the well-validated body-fitted grid solutions. The viscosity effect is also highlighted by comparing the results obtained by solving both Euler and Navier–Stokes equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Aeroacoustics
International Journal of Aeroacoustics ACOUSTICS-ENGINEERING, AEROSPACE
CiteScore
2.10
自引率
10.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published. Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.
期刊最新文献
Precise acoustic drone localization and tracking via drone noise: Steered response power - phase transform around harmonics Aerodynamic and aeroacoustic characteristics of rocket sled under strong ground effect Prediction of the aerodynamic noise of an airfoil via the hybrid methods of aeroacoustics Aeroacoustic source localization using the microphone array method with application to wind turbine noise Christopher Tam: Brief history and accomplishments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1