S. Kawagoe, R. Nakamura, R. Tasaki, H. Oshima, M. Higashihata, D. Nakamura, T. Omatsu
{"title":"利用光学涡旋光束微细加工金薄膜","authors":"S. Kawagoe, R. Nakamura, R. Tasaki, H. Oshima, M. Higashihata, D. Nakamura, T. Omatsu","doi":"10.2961/JLMN.2019.01.0006","DOIUrl":null,"url":null,"abstract":"We fabricate Au microneedle structures by irradiating nanosecond optical vortex pulse, possessing orbital angular momentum (OAM), to Au thin film. Twisted microneedle associated with the handedness of optical vortex is formed. The partial liquid motion of the molten Au film and the OAM transfer effects play a role to establish a twisted Au microneedle. An Au microsphere on a twisted pillar is also achieved. Non-twisted structure is fabricated with picosecond optical vortex pulse irradiation due to unoptimized condition such as laser fluence, film thickness and unavoidable imperfections of the optical vortex.","PeriodicalId":54788,"journal":{"name":"Journal of Laser Micro Nanoengineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Microfabrication of Au Film Using Optical Vortex Beam\",\"authors\":\"S. Kawagoe, R. Nakamura, R. Tasaki, H. Oshima, M. Higashihata, D. Nakamura, T. Omatsu\",\"doi\":\"10.2961/JLMN.2019.01.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We fabricate Au microneedle structures by irradiating nanosecond optical vortex pulse, possessing orbital angular momentum (OAM), to Au thin film. Twisted microneedle associated with the handedness of optical vortex is formed. The partial liquid motion of the molten Au film and the OAM transfer effects play a role to establish a twisted Au microneedle. An Au microsphere on a twisted pillar is also achieved. Non-twisted structure is fabricated with picosecond optical vortex pulse irradiation due to unoptimized condition such as laser fluence, film thickness and unavoidable imperfections of the optical vortex.\",\"PeriodicalId\":54788,\"journal\":{\"name\":\"Journal of Laser Micro Nanoengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Micro Nanoengineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2961/JLMN.2019.01.0006\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Micro Nanoengineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2961/JLMN.2019.01.0006","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microfabrication of Au Film Using Optical Vortex Beam
We fabricate Au microneedle structures by irradiating nanosecond optical vortex pulse, possessing orbital angular momentum (OAM), to Au thin film. Twisted microneedle associated with the handedness of optical vortex is formed. The partial liquid motion of the molten Au film and the OAM transfer effects play a role to establish a twisted Au microneedle. An Au microsphere on a twisted pillar is also achieved. Non-twisted structure is fabricated with picosecond optical vortex pulse irradiation due to unoptimized condition such as laser fluence, film thickness and unavoidable imperfections of the optical vortex.
期刊介绍:
Journal of Laser Micro/Nanoengineering, founded in 2005 by Japan Laser Processing Society (JLPS), is an international online journal for the rapid publication of experimental and theoretical investigations in laser-based technology for micro- and nano-engineering. Access to the full article is provided free of charge.
JLMN publishes regular articles, technical communications, and invited papers about new results related to laser-based technology for micro and nano engineering. The articles oriented to dominantly technical or industrial developments containing interesting and useful information may be considered as technical communications.