用于镰状细胞病患者无创持续健康监测的光学腕带的蓝图设计

Syed Mehmood Ali, S. Ghufran Khalid, Uzma Ali, Kamran Hameed
{"title":"用于镰状细胞病患者无创持续健康监测的光学腕带的蓝图设计","authors":"Syed Mehmood Ali, S. Ghufran Khalid, Uzma Ali, Kamran Hameed","doi":"10.22201/icat.24486736e.2023.21.1.2185","DOIUrl":null,"url":null,"abstract":"Sickle cell disease is a group of health disorders that affect hemoglobin in red blood cells. Sickle cell disease causes multiple manifestations and complications, including infections, delayed growth, pain crisis, and multi-organs damage. These complications can disturb the patients' vital signs, including body temperature, heart rate, and oxygen saturation. The decline in hemoglobin level is another indication of sickle cell disease due to abnormal hemoglobin that distorts red blood cells resulting in sickle cell anemia. RBCs, also called erythrocytes, are found in the blood and responsible for carrying oxygen to the body tissues attached to the hemoglobin. Optical microscopy can detect and monitor sickle cell disease, but it requires a blood sample and offline analysis, which is a time-consuming process. There is currently no known technology available to provide non-invasive monitoring solutions for sickle cell disease patients' health. Therefore, a need arises for a non-invasive and continuous monitoring solution to continuously check on sickle cell disease patients, which can be transformed into a wearable monitoring device. The proposed optical wristband consists of optical sensors that provide non-invasive and continuous health status monitoring of sickle cell disease patients using key vital signs and hemoglobin levels. A comparative study was performed among 21 participants and equally divided into three groups (non-anemic, anemic, and sickle cell disease patients). The data was collected from optical sensors, Arduino used as a processor, and continuously monitors the patient's vital signs and hemoglobin levels. Abnormal reading of any parameter alerts the user of any unhealthy status, and the parameter's trend assists the clinician in patient assessment. The body temperature and oxygen saturation levels of the anemic patients were found in the normal ranges, but the heart rate of three patients and hemoglobin of all the participants were found in aberrant ranges. The vital signs and hemoglobin levels of all sickle cell disease patients were beyond the normal ranges and significantly different (p>0.001) than non-anemic and anemic groups. Therefore, these physiological parameters monitoring has clinical importance for sickle cell disease management and early treatment.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Blueprint design of optical-based wristband for non-invasive and continuous health status monitoring of sickle cell disease patients\",\"authors\":\"Syed Mehmood Ali, S. Ghufran Khalid, Uzma Ali, Kamran Hameed\",\"doi\":\"10.22201/icat.24486736e.2023.21.1.2185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sickle cell disease is a group of health disorders that affect hemoglobin in red blood cells. Sickle cell disease causes multiple manifestations and complications, including infections, delayed growth, pain crisis, and multi-organs damage. These complications can disturb the patients' vital signs, including body temperature, heart rate, and oxygen saturation. The decline in hemoglobin level is another indication of sickle cell disease due to abnormal hemoglobin that distorts red blood cells resulting in sickle cell anemia. RBCs, also called erythrocytes, are found in the blood and responsible for carrying oxygen to the body tissues attached to the hemoglobin. Optical microscopy can detect and monitor sickle cell disease, but it requires a blood sample and offline analysis, which is a time-consuming process. There is currently no known technology available to provide non-invasive monitoring solutions for sickle cell disease patients' health. Therefore, a need arises for a non-invasive and continuous monitoring solution to continuously check on sickle cell disease patients, which can be transformed into a wearable monitoring device. The proposed optical wristband consists of optical sensors that provide non-invasive and continuous health status monitoring of sickle cell disease patients using key vital signs and hemoglobin levels. A comparative study was performed among 21 participants and equally divided into three groups (non-anemic, anemic, and sickle cell disease patients). The data was collected from optical sensors, Arduino used as a processor, and continuously monitors the patient's vital signs and hemoglobin levels. Abnormal reading of any parameter alerts the user of any unhealthy status, and the parameter's trend assists the clinician in patient assessment. The body temperature and oxygen saturation levels of the anemic patients were found in the normal ranges, but the heart rate of three patients and hemoglobin of all the participants were found in aberrant ranges. The vital signs and hemoglobin levels of all sickle cell disease patients were beyond the normal ranges and significantly different (p>0.001) than non-anemic and anemic groups. Therefore, these physiological parameters monitoring has clinical importance for sickle cell disease management and early treatment.\",\"PeriodicalId\":15073,\"journal\":{\"name\":\"Journal of Applied Research and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22201/icat.24486736e.2023.21.1.2185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2023.21.1.2185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

镰状细胞病是一组影响红细胞中血红蛋白的健康疾病。镰状细胞病有多种表现和并发症,包括感染、生长迟缓、疼痛危象和多器官损害。这些并发症会扰乱患者的生命体征,包括体温、心率和血氧饱和度。血红蛋白水平的下降是镰状细胞病的另一个迹象,由于血红蛋白异常,使红细胞变形,导致镰状细胞性贫血。红细胞,也叫红细胞,存在于血液中,负责将氧气输送到附着在血红蛋白上的身体组织。光学显微镜可以检测和监测镰状细胞病,但它需要血液样本和离线分析,这是一个耗时的过程。目前还没有已知的技术可以为镰状细胞病患者的健康提供无创监测解决方案。因此,需要一种非侵入性的连续监测解决方案来持续检查镰状细胞病患者,这种解决方案可以转化为可穿戴式监测设备。该光学腕带由光学传感器组成,可通过关键生命体征和血红蛋白水平对镰状细胞病患者进行无创、连续的健康状态监测。在21名参与者中进行了一项比较研究,并将其平均分为三组(非贫血、贫血和镰状细胞病患者)。数据从光学传感器收集,Arduino作为处理器,并持续监测患者的生命体征和血红蛋白水平。任何参数的异常读数提醒用户任何不健康的状态,参数的趋势协助临床医生在病人的评估。贫血患者的体温和血氧饱和度均在正常范围内,但3例患者的心率和所有参与者的血红蛋白均在异常范围内。所有镰状细胞病患者的生命体征和血红蛋白水平均超出正常范围,与非贫血组和贫血组有显著差异(p < 0.001)。因此,这些生理参数的监测对镰状细胞病的管理和早期治疗具有重要的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Blueprint design of optical-based wristband for non-invasive and continuous health status monitoring of sickle cell disease patients
Sickle cell disease is a group of health disorders that affect hemoglobin in red blood cells. Sickle cell disease causes multiple manifestations and complications, including infections, delayed growth, pain crisis, and multi-organs damage. These complications can disturb the patients' vital signs, including body temperature, heart rate, and oxygen saturation. The decline in hemoglobin level is another indication of sickle cell disease due to abnormal hemoglobin that distorts red blood cells resulting in sickle cell anemia. RBCs, also called erythrocytes, are found in the blood and responsible for carrying oxygen to the body tissues attached to the hemoglobin. Optical microscopy can detect and monitor sickle cell disease, but it requires a blood sample and offline analysis, which is a time-consuming process. There is currently no known technology available to provide non-invasive monitoring solutions for sickle cell disease patients' health. Therefore, a need arises for a non-invasive and continuous monitoring solution to continuously check on sickle cell disease patients, which can be transformed into a wearable monitoring device. The proposed optical wristband consists of optical sensors that provide non-invasive and continuous health status monitoring of sickle cell disease patients using key vital signs and hemoglobin levels. A comparative study was performed among 21 participants and equally divided into three groups (non-anemic, anemic, and sickle cell disease patients). The data was collected from optical sensors, Arduino used as a processor, and continuously monitors the patient's vital signs and hemoglobin levels. Abnormal reading of any parameter alerts the user of any unhealthy status, and the parameter's trend assists the clinician in patient assessment. The body temperature and oxygen saturation levels of the anemic patients were found in the normal ranges, but the heart rate of three patients and hemoglobin of all the participants were found in aberrant ranges. The vital signs and hemoglobin levels of all sickle cell disease patients were beyond the normal ranges and significantly different (p>0.001) than non-anemic and anemic groups. Therefore, these physiological parameters monitoring has clinical importance for sickle cell disease management and early treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Research and Technology
Journal of Applied Research and Technology 工程技术-工程:电子与电气
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work. The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs. JART classifies research into the following main fields: -Material Science: Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors. -Computer Science: Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering. -Industrial Engineering: Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies -Electronic Engineering: Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation. -Instrumentation engineering and science: Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.
期刊最新文献
Use of recycled concrete and rice husk ash for concrete: A review Health assessment of welding by-products in a linear welding automation: Temperature and smoke concentration measurements matlab based graphical user interface for the monitoring and early detection of keratoconus Identification of geothermal potential zone associated with land surface temperature derived from Landsat 8 data using split-window algorithm Effect of microcarbon particle size and dispersion on the electrical conductivity of LLDPE-carbon composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1