花诱导中DlERF23基因的克隆与分析

IF 1.4 4区 生物学 Q3 PLANT SCIENCES Notulae Botanicae Horti Agrobotanici Cluj-napoca Pub Date : 2023-06-20 DOI:10.15835/nbha51213133
Xuelian Sang, Ci Ren, D. Jue
{"title":"花诱导中DlERF23基因的克隆与分析","authors":"Xuelian Sang, Ci Ren, D. Jue","doi":"10.15835/nbha51213133","DOIUrl":null,"url":null,"abstract":"Irregular flowering is a serious problem in longan production. Identifying the flower induction-related genes and analyzing their regulation mechanism is the key to solve this problem. The APETALA2/ethylene responsive factor (AP2/ERF) superfamily members are transcription factors (TFs) that regulate diverse developmental processes, including flowering time, and stress responses in plants. However, there is still no research about AP2/ERF involved in the regulation of longan flower induction. In the present study, a AP2/ERF TF member DlERF23 was cloned from longan (Dimocarpus longan). It has a typical AP2 domain with the coding sequence (CDS) of DlERF23 is 552 bp in length and encodes 184 amino acids. The molecular weight of DlERF23 protein was 20.41 kda and the theoretical isoelectric point (PI) was 7.69. The amino acid sequence of DlERF23 protein had the highest similarity with CsERF23 (XP_006478313.1) of Citrus sinensis and CcERF23 (XP_006441807.2) of Citrus clementina. The results of qRT-PCR showed that the relative expression level of DlERF23 gene in pericarp was higher, followed by stem, leave, flower and flower bud. Meanwhile, DlERF23 gene significant down-regulated in the early stage of flower induction in ‘Sijimi’ (SJ) longan and up-regulated in the late stage of flower induction in ‘Shixia’ (SX). The results of transient expression of Arabidopsis protoplasts showed that the fluorescence signal was mainly concentrated in the nucleus. Moreover, overexpression of DlERF23 in Arabidopsis promoted early flowering. These results provide useful information for revealing the biological roles of DlERF23 in longan and increase our understanding of the AP2/ERF superfamily members in fruit trees.","PeriodicalId":19364,"journal":{"name":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloning and analysis of DlERF23 gene in flower induction\",\"authors\":\"Xuelian Sang, Ci Ren, D. Jue\",\"doi\":\"10.15835/nbha51213133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irregular flowering is a serious problem in longan production. Identifying the flower induction-related genes and analyzing their regulation mechanism is the key to solve this problem. The APETALA2/ethylene responsive factor (AP2/ERF) superfamily members are transcription factors (TFs) that regulate diverse developmental processes, including flowering time, and stress responses in plants. However, there is still no research about AP2/ERF involved in the regulation of longan flower induction. In the present study, a AP2/ERF TF member DlERF23 was cloned from longan (Dimocarpus longan). It has a typical AP2 domain with the coding sequence (CDS) of DlERF23 is 552 bp in length and encodes 184 amino acids. The molecular weight of DlERF23 protein was 20.41 kda and the theoretical isoelectric point (PI) was 7.69. The amino acid sequence of DlERF23 protein had the highest similarity with CsERF23 (XP_006478313.1) of Citrus sinensis and CcERF23 (XP_006441807.2) of Citrus clementina. The results of qRT-PCR showed that the relative expression level of DlERF23 gene in pericarp was higher, followed by stem, leave, flower and flower bud. Meanwhile, DlERF23 gene significant down-regulated in the early stage of flower induction in ‘Sijimi’ (SJ) longan and up-regulated in the late stage of flower induction in ‘Shixia’ (SX). The results of transient expression of Arabidopsis protoplasts showed that the fluorescence signal was mainly concentrated in the nucleus. Moreover, overexpression of DlERF23 in Arabidopsis promoted early flowering. These results provide useful information for revealing the biological roles of DlERF23 in longan and increase our understanding of the AP2/ERF superfamily members in fruit trees.\",\"PeriodicalId\":19364,\"journal\":{\"name\":\"Notulae Botanicae Horti Agrobotanici Cluj-napoca\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notulae Botanicae Horti Agrobotanici Cluj-napoca\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15835/nbha51213133\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15835/nbha51213133","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

开花不规律是龙眼生产中的一个严重问题。鉴定花诱导相关基因并分析其调控机制是解决这一问题的关键。aptala2 /乙烯响应因子(AP2/ERF)超家族成员是调控植物多种发育过程的转录因子(TFs),包括开花时间和胁迫反应。然而,AP2/ERF是否参与桂圆花诱导的调控尚无相关研究。本研究从龙眼中克隆了AP2/ERF TF成员DlERF23。DlERF23具有典型的AP2结构域,全长552 bp,编码184个氨基酸。DlERF23蛋白分子量为20.41 kda,理论等电点为7.69。DlERF23蛋白的氨基酸序列与柑橘CsERF23 (XP_006478313.1)和柑橘CcERF23 (XP_006441807.2)的相似性最高。qRT-PCR结果显示,DlERF23基因在果皮中的相对表达量最高,其次是茎、叶、花和花蕾。与此同时,DlERF23基因在“四极蜜”(SJ)龙眼诱导花前期显著下调,在“石霞”(SX)诱导花后期显著上调。拟南芥原生质体瞬时表达结果表明,荧光信号主要集中在细胞核内。此外,DlERF23在拟南芥中的过表达促进了早期开花。这些结果为揭示DlERF23在龙眼中的生物学作用和加深对果树AP2/ERF超家族成员的认识提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloning and analysis of DlERF23 gene in flower induction
Irregular flowering is a serious problem in longan production. Identifying the flower induction-related genes and analyzing their regulation mechanism is the key to solve this problem. The APETALA2/ethylene responsive factor (AP2/ERF) superfamily members are transcription factors (TFs) that regulate diverse developmental processes, including flowering time, and stress responses in plants. However, there is still no research about AP2/ERF involved in the regulation of longan flower induction. In the present study, a AP2/ERF TF member DlERF23 was cloned from longan (Dimocarpus longan). It has a typical AP2 domain with the coding sequence (CDS) of DlERF23 is 552 bp in length and encodes 184 amino acids. The molecular weight of DlERF23 protein was 20.41 kda and the theoretical isoelectric point (PI) was 7.69. The amino acid sequence of DlERF23 protein had the highest similarity with CsERF23 (XP_006478313.1) of Citrus sinensis and CcERF23 (XP_006441807.2) of Citrus clementina. The results of qRT-PCR showed that the relative expression level of DlERF23 gene in pericarp was higher, followed by stem, leave, flower and flower bud. Meanwhile, DlERF23 gene significant down-regulated in the early stage of flower induction in ‘Sijimi’ (SJ) longan and up-regulated in the late stage of flower induction in ‘Shixia’ (SX). The results of transient expression of Arabidopsis protoplasts showed that the fluorescence signal was mainly concentrated in the nucleus. Moreover, overexpression of DlERF23 in Arabidopsis promoted early flowering. These results provide useful information for revealing the biological roles of DlERF23 in longan and increase our understanding of the AP2/ERF superfamily members in fruit trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
118
审稿时长
3 months
期刊介绍: Notulae Botanicae Horti Agrobotanici Cluj-Napoca is a peer-reviewed biannual journal aimed at disseminating significant research and original papers, critical reviews and short reviews. The subjects refer on plant biodiversity, genetics and plant breeding, development of new methodologies that can be of interest to a wide audience of plant scientists in all areas of plant biology, agriculture, horticulture and forestry. The journal encourages authors to frame their research questions and discuss their results in terms of the major questions of plant sciences, thereby maximizing the impact and value of their research, and thus in favor of spreading their studies outcome. The papers must be of potential interest to a significant number of scientists and, if specific to a local situation, must be relevant to a wide body of knowledge in life sciences. Articles should make a significant contribution to the advancement of knowledge or toward a better understanding of existing biological and agricultural concepts. An international Editorial Board advises the journal. The total content of the journal may be used for educational, non-profit purposes without regard to copyright. The distribution of the material is encouraged with the condition that the authors and the source (Notulae Botanicae Horti Agrobotanici Cluj-Napoca or JCR abbrev. title Not Bot Horti Agrobo) are mentioned.
期刊最新文献
Introduction pages, NBHA-CN 51(4), 2023 Assessment of common wheat (Triticum aestivum L.) yield and quality under organic farming in the southwest of Romania Role of silica nanoparticles in enhancing drought tolerance of cereal crops The effect of arbuscular mycorrhizal inoculation and plant growth-promoting rhizobacteria on maize (Zea mays L.) under boron toxicity stress Are D and Rec strains of Plum pox virus similar or different in terms of competitiveness and symptomatology?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1