{"title":"一种用于雾网络中物联网设备的基于格密码的新型混合认证协议","authors":"","doi":"10.1016/j.dcan.2022.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>The Internet of Things (IoT) has taken the interconnected world by storm. Due to their immense applicability, IoT devices are being scaled at exponential proportions worldwide. But, very little focus has been given to securing such devices. As these devices are constrained in numerous aspects, it leaves network designers and administrators with no choice but to deploy them with minimal or no security at all. We have seen distributed denial-of-service attacks being raised using such devices during the infamous Mirai botnet attack in 2016. Therefore we propose a lightweight authentication protocol to provide proper access to such devices. We have considered several aspects while designing our authentication protocol, such as scalability, movement, user registration, device registration, etc. To define the architecture we used a three-layered model consisting of cloud, fog, and edge devices. We have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and usage. We also provide a fail-safe mechanism for a situation where an authenticating server might fail, and the deployed IoT devices can self-organize to keep providing services with no human intervention. We find that our protocol works the fastest when using ring learning with errors. We prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications tool. In conclusion, we propose a safe, hybrid, and fast authentication protocol for authenticating IoT devices in a fog computing environment.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822002619/pdfft?md5=f8a2dd0f1aef52840fe8502a6ec294b5&pid=1-s2.0-S2352864822002619-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel hybrid authentication protocol utilizing lattice-based cryptography for IoT devices in fog networks\",\"authors\":\"\",\"doi\":\"10.1016/j.dcan.2022.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Internet of Things (IoT) has taken the interconnected world by storm. Due to their immense applicability, IoT devices are being scaled at exponential proportions worldwide. But, very little focus has been given to securing such devices. As these devices are constrained in numerous aspects, it leaves network designers and administrators with no choice but to deploy them with minimal or no security at all. We have seen distributed denial-of-service attacks being raised using such devices during the infamous Mirai botnet attack in 2016. Therefore we propose a lightweight authentication protocol to provide proper access to such devices. We have considered several aspects while designing our authentication protocol, such as scalability, movement, user registration, device registration, etc. To define the architecture we used a three-layered model consisting of cloud, fog, and edge devices. We have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and usage. We also provide a fail-safe mechanism for a situation where an authenticating server might fail, and the deployed IoT devices can self-organize to keep providing services with no human intervention. We find that our protocol works the fastest when using ring learning with errors. We prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications tool. In conclusion, we propose a safe, hybrid, and fast authentication protocol for authenticating IoT devices in a fog computing environment.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864822002619/pdfft?md5=f8a2dd0f1aef52840fe8502a6ec294b5&pid=1-s2.0-S2352864822002619-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864822002619\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002619","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A novel hybrid authentication protocol utilizing lattice-based cryptography for IoT devices in fog networks
The Internet of Things (IoT) has taken the interconnected world by storm. Due to their immense applicability, IoT devices are being scaled at exponential proportions worldwide. But, very little focus has been given to securing such devices. As these devices are constrained in numerous aspects, it leaves network designers and administrators with no choice but to deploy them with minimal or no security at all. We have seen distributed denial-of-service attacks being raised using such devices during the infamous Mirai botnet attack in 2016. Therefore we propose a lightweight authentication protocol to provide proper access to such devices. We have considered several aspects while designing our authentication protocol, such as scalability, movement, user registration, device registration, etc. To define the architecture we used a three-layered model consisting of cloud, fog, and edge devices. We have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and usage. We also provide a fail-safe mechanism for a situation where an authenticating server might fail, and the deployed IoT devices can self-organize to keep providing services with no human intervention. We find that our protocol works the fastest when using ring learning with errors. We prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications tool. In conclusion, we propose a safe, hybrid, and fast authentication protocol for authenticating IoT devices in a fog computing environment.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.