{"title":"芳烃分离与芳烃改造一体化的能量与耗力经济分析","authors":"Dan Zhang, Minbo Yang, Xiao Feng","doi":"10.1007/s11705-022-2192-9","DOIUrl":null,"url":null,"abstract":"<div><p>Methanol to aromatics produces multiple products, resulting in a limited selectivity of xylene. Aromatics upgrading is an effective way to produce more valuable xylene product, and different feed ratios generate discrepant product distributions. This work integrates the aromatics separation with toluene disproportionation, transalkylation of toluene and trimethylbenzene, and isomerization of xylene and trimethylbenzene. Exergy and exergoeconomic analyses are conducted to give insights in the splitting ratios of benzene, toluene and heavy aromatics for aromatics upgrading. First, a detailed simulation model is developed in Aspen HYSYS. Then, 300 splitting ratio sets of benzene and toluene for conversion are studied to investigate the process performances. The results indicate that there are different preferences for the splitting ratios of benzene and toluene in terms of exergy and exergoeconomic performances. The process generates lower total exergy destruction when the splitting ratio of toluene varies between 0.07 and 0.18, and that of benzene fluctuates between 0.55 and 0.6. Nevertheless, the process presents lower total product unit cost with the splitting ratio of toluene less than 0.18 and that of benzene fluctuating between 0.44 and 0.89. Besides, it is found that distillation is the biggest contributor to the total exergy destruction, accounting for 94.97%.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 2","pages":"183 - 193"},"PeriodicalIF":4.3000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exergy and exergoeconomic analyses for integration of aromatics separation with aromatics upgrading\",\"authors\":\"Dan Zhang, Minbo Yang, Xiao Feng\",\"doi\":\"10.1007/s11705-022-2192-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Methanol to aromatics produces multiple products, resulting in a limited selectivity of xylene. Aromatics upgrading is an effective way to produce more valuable xylene product, and different feed ratios generate discrepant product distributions. This work integrates the aromatics separation with toluene disproportionation, transalkylation of toluene and trimethylbenzene, and isomerization of xylene and trimethylbenzene. Exergy and exergoeconomic analyses are conducted to give insights in the splitting ratios of benzene, toluene and heavy aromatics for aromatics upgrading. First, a detailed simulation model is developed in Aspen HYSYS. Then, 300 splitting ratio sets of benzene and toluene for conversion are studied to investigate the process performances. The results indicate that there are different preferences for the splitting ratios of benzene and toluene in terms of exergy and exergoeconomic performances. The process generates lower total exergy destruction when the splitting ratio of toluene varies between 0.07 and 0.18, and that of benzene fluctuates between 0.55 and 0.6. Nevertheless, the process presents lower total product unit cost with the splitting ratio of toluene less than 0.18 and that of benzene fluctuating between 0.44 and 0.89. Besides, it is found that distillation is the biggest contributor to the total exergy destruction, accounting for 94.97%.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"17 2\",\"pages\":\"183 - 193\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-022-2192-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-022-2192-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Exergy and exergoeconomic analyses for integration of aromatics separation with aromatics upgrading
Methanol to aromatics produces multiple products, resulting in a limited selectivity of xylene. Aromatics upgrading is an effective way to produce more valuable xylene product, and different feed ratios generate discrepant product distributions. This work integrates the aromatics separation with toluene disproportionation, transalkylation of toluene and trimethylbenzene, and isomerization of xylene and trimethylbenzene. Exergy and exergoeconomic analyses are conducted to give insights in the splitting ratios of benzene, toluene and heavy aromatics for aromatics upgrading. First, a detailed simulation model is developed in Aspen HYSYS. Then, 300 splitting ratio sets of benzene and toluene for conversion are studied to investigate the process performances. The results indicate that there are different preferences for the splitting ratios of benzene and toluene in terms of exergy and exergoeconomic performances. The process generates lower total exergy destruction when the splitting ratio of toluene varies between 0.07 and 0.18, and that of benzene fluctuates between 0.55 and 0.6. Nevertheless, the process presents lower total product unit cost with the splitting ratio of toluene less than 0.18 and that of benzene fluctuating between 0.44 and 0.89. Besides, it is found that distillation is the biggest contributor to the total exergy destruction, accounting for 94.97%.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.