基于进化优化技术的天线阵优化研究进展

D.D. Devisasi Kala, D. Sundari
{"title":"基于进化优化技术的天线阵优化研究进展","authors":"D.D. Devisasi Kala, D. Sundari","doi":"10.1108/ijius-08-2021-0093","DOIUrl":null,"url":null,"abstract":"PurposeOptimization involves changing the input parameters of a process that is experimented with different conditions to obtain the maximum or minimum result. Increasing interest is shown by antenna researchers in finding the optimum solution for designing complex antenna arrays which are possible by optimization techniques.Design/methodology/approachDesign of antenna array is a significant electro-magnetic problem of optimization in the current era. The philosophy of optimization is to find the best solution among several available alternatives. In an antenna array, energy is wasted due to side lobe levels which can be reduced by various optimization techniques. Currently, developing optimization techniques applicable for various types of antenna arrays is focused on by researchers.FindingsIn the paper, different optimization algorithms for reducing the side lobe level of the antenna array are presented. Specifically, genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), cuckoo search algorithm (CSA), invasive weed optimization (IWO), whale optimization algorithm (WOA), fruitfly optimization algorithm (FOA), firefly algorithm (FA), cat swarm optimization (CSO), dragonfly algorithm (DA), enhanced firefly algorithm (EFA) and bat flower pollinator (BFP) are the most popular optimization techniques. Various metrics such as gain enhancement, reduction of side lobe, speed of convergence and the directivity of these algorithms are discussed. Faster convergence is provided by the GA which is used for genetic operator randomization. GA provides improved efficiency of computation with the extreme optimal result as well as outperforming other algorithms of optimization in finding the best solution.Originality/valueThe originality of the paper includes a study that reveals the usage of the different antennas and their importance in various applications.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A review on optimization of antenna array by evolutionary optimization techniques\",\"authors\":\"D.D. Devisasi Kala, D. Sundari\",\"doi\":\"10.1108/ijius-08-2021-0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeOptimization involves changing the input parameters of a process that is experimented with different conditions to obtain the maximum or minimum result. Increasing interest is shown by antenna researchers in finding the optimum solution for designing complex antenna arrays which are possible by optimization techniques.Design/methodology/approachDesign of antenna array is a significant electro-magnetic problem of optimization in the current era. The philosophy of optimization is to find the best solution among several available alternatives. In an antenna array, energy is wasted due to side lobe levels which can be reduced by various optimization techniques. Currently, developing optimization techniques applicable for various types of antenna arrays is focused on by researchers.FindingsIn the paper, different optimization algorithms for reducing the side lobe level of the antenna array are presented. Specifically, genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), cuckoo search algorithm (CSA), invasive weed optimization (IWO), whale optimization algorithm (WOA), fruitfly optimization algorithm (FOA), firefly algorithm (FA), cat swarm optimization (CSO), dragonfly algorithm (DA), enhanced firefly algorithm (EFA) and bat flower pollinator (BFP) are the most popular optimization techniques. Various metrics such as gain enhancement, reduction of side lobe, speed of convergence and the directivity of these algorithms are discussed. Faster convergence is provided by the GA which is used for genetic operator randomization. GA provides improved efficiency of computation with the extreme optimal result as well as outperforming other algorithms of optimization in finding the best solution.Originality/valueThe originality of the paper includes a study that reveals the usage of the different antennas and their importance in various applications.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-08-2021-0093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-08-2021-0093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 4

摘要

目的优化涉及改变在不同条件下进行实验的过程的输入参数,以获得最大或最小结果。天线研究人员对寻找设计复杂天线阵列的最佳解决方案越来越感兴趣,这可以通过优化技术来实现。设计/方法/途径天线阵列的设计是当今时代一个重要的电磁优化问题。优化的理念是在几个可用的替代方案中找到最佳解决方案。在天线阵列中,能量由于旁瓣电平而被浪费,旁瓣电平可以通过各种优化技术来降低。目前,开发适用于各种类型天线阵列的优化技术是研究人员的重点。文中提出了降低天线阵列旁瓣电平的不同优化算法。具体而言,遗传算法(GA)、粒子群优化(PSO)、蚁群优化(ACO)、杜鹃搜索算法(CSA)、入侵杂草优化(IWO)、鲸鱼优化算法(WOA)、果蝇优化算法(FOA)、萤火虫算法(FA)、猫群优化(CSO)、蜻蜓算法(DA),增强萤火虫算法(EFA)和蝙蝠花授粉器(BFP)是最流行的优化技术。讨论了这些算法的增益增强、旁瓣减小、收敛速度和方向性等指标。用于遗传算子随机化的遗传算法提供了更快的收敛性。GA提供了改进的计算效率和极端优化结果,并且在寻找最佳解方面优于其他优化算法。独创性/价值本文的独创性包括一项研究,揭示了不同天线的用途及其在各种应用中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review on optimization of antenna array by evolutionary optimization techniques
PurposeOptimization involves changing the input parameters of a process that is experimented with different conditions to obtain the maximum or minimum result. Increasing interest is shown by antenna researchers in finding the optimum solution for designing complex antenna arrays which are possible by optimization techniques.Design/methodology/approachDesign of antenna array is a significant electro-magnetic problem of optimization in the current era. The philosophy of optimization is to find the best solution among several available alternatives. In an antenna array, energy is wasted due to side lobe levels which can be reduced by various optimization techniques. Currently, developing optimization techniques applicable for various types of antenna arrays is focused on by researchers.FindingsIn the paper, different optimization algorithms for reducing the side lobe level of the antenna array are presented. Specifically, genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), cuckoo search algorithm (CSA), invasive weed optimization (IWO), whale optimization algorithm (WOA), fruitfly optimization algorithm (FOA), firefly algorithm (FA), cat swarm optimization (CSO), dragonfly algorithm (DA), enhanced firefly algorithm (EFA) and bat flower pollinator (BFP) are the most popular optimization techniques. Various metrics such as gain enhancement, reduction of side lobe, speed of convergence and the directivity of these algorithms are discussed. Faster convergence is provided by the GA which is used for genetic operator randomization. GA provides improved efficiency of computation with the extreme optimal result as well as outperforming other algorithms of optimization in finding the best solution.Originality/valueThe originality of the paper includes a study that reveals the usage of the different antennas and their importance in various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
期刊最新文献
Design of hexacopter and finite element analysis for material selection Towards a novel cyber physical control system framework: a deep learning driven use case Employing a multi-sensor fusion array to detect objects for an orbital transfer vehicle to remove space debris Communication via quad/hexa-copters during disasters Nonlinear optimal control for UAVs with tilting rotors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1