拉曼光谱在2型糖尿病诊断及随访中的应用。简要回顾

IF 0.3 Q4 SPECTROSCOPY Biomedical Spectroscopy and Imaging Pub Date : 2020-11-30 DOI:10.3233/bsi-200207
Alejandra Loyola-Leyva, K. Hernández-Vidales, J. Loyola-Rodríguez, F. J. González
{"title":"拉曼光谱在2型糖尿病诊断及随访中的应用。简要回顾","authors":"Alejandra Loyola-Leyva, K. Hernández-Vidales, J. Loyola-Rodríguez, F. J. González","doi":"10.3233/bsi-200207","DOIUrl":null,"url":null,"abstract":"Background: There is considerable interest in developing faster, less invasive, and more objective techniques to diagnose type 2 diabetes mellits (T2DM). Optical techniques like Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) are efficient, precise, low-cost, portable, and easy to handle, which seem to overcome most of the present difficulties of actual tests for T2DM diagnosis. However, the use of both Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) has been limited for T2DM diagnosis or follow-up. Objective: To gather information regarding the use of Raman spectroscopy and SERS to evaluate the spectra of biofluids (blood components, saliva, and urine) and tissues (skin) as an early diagnostic tool or follow-up for T2DM. Results: Skin and biofluids provide a great amount of information that can be analyzed by Raman spectroscopy and SERS. These optical techniques are excellent for clinical applications and can differentiate people with T2DM from healthy individuals, predict complications arising from T2DM (chronic kidney disease), and might be used to monitor glucose (glycemic control). Conclusion: Raman spectroscopy and SERS are good optical techniques for the diagnosis of T2DM in which sample preparation is not necessary or very simple, non-destructive, non-invasive, relatively fast to acquire, and low-cost.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/bsi-200207","citationCount":"1","resultStr":"{\"title\":\"Raman spectroscopy applications for the diagnosis and follow-up of type 2 diabetes mellitus. A brief review\",\"authors\":\"Alejandra Loyola-Leyva, K. Hernández-Vidales, J. Loyola-Rodríguez, F. J. González\",\"doi\":\"10.3233/bsi-200207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: There is considerable interest in developing faster, less invasive, and more objective techniques to diagnose type 2 diabetes mellits (T2DM). Optical techniques like Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) are efficient, precise, low-cost, portable, and easy to handle, which seem to overcome most of the present difficulties of actual tests for T2DM diagnosis. However, the use of both Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) has been limited for T2DM diagnosis or follow-up. Objective: To gather information regarding the use of Raman spectroscopy and SERS to evaluate the spectra of biofluids (blood components, saliva, and urine) and tissues (skin) as an early diagnostic tool or follow-up for T2DM. Results: Skin and biofluids provide a great amount of information that can be analyzed by Raman spectroscopy and SERS. These optical techniques are excellent for clinical applications and can differentiate people with T2DM from healthy individuals, predict complications arising from T2DM (chronic kidney disease), and might be used to monitor glucose (glycemic control). Conclusion: Raman spectroscopy and SERS are good optical techniques for the diagnosis of T2DM in which sample preparation is not necessary or very simple, non-destructive, non-invasive, relatively fast to acquire, and low-cost.\",\"PeriodicalId\":44239,\"journal\":{\"name\":\"Biomedical Spectroscopy and Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/bsi-200207\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Spectroscopy and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/bsi-200207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/bsi-200207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 1

摘要

背景:人们对开发更快、侵入性更小、更客观的技术来诊断2型糖尿病(T2DM)非常感兴趣。拉曼光谱和表面增强拉曼光谱(SERS)等光学技术高效、精确、低成本、便携且易于操作,似乎克服了目前T2DM诊断实际测试的大部分困难。然而,拉曼光谱和表面增强拉曼光谱(SERS)在T2DM诊断或随访中的应用受到限制。目的:收集有关使用拉曼光谱和SERS评估生物流体(血液成分、唾液和尿液)和组织(皮肤)光谱的信息,作为T2DM的早期诊断工具或随访。结果:皮肤和生物流体提供了大量的信息,可以通过拉曼光谱和SERS进行分析。这些光学技术非常适合临床应用,可以区分T2DM患者和健康人,预测T2DM(慢性肾脏疾病)引起的并发症,并可用于监测血糖(血糖控制)。结论:拉曼光谱和SERS是诊断T2DM的良好光学技术,样品制备不必要或非常简单、无损、无创、获取相对快速且成本低廉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Raman spectroscopy applications for the diagnosis and follow-up of type 2 diabetes mellitus. A brief review
Background: There is considerable interest in developing faster, less invasive, and more objective techniques to diagnose type 2 diabetes mellits (T2DM). Optical techniques like Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) are efficient, precise, low-cost, portable, and easy to handle, which seem to overcome most of the present difficulties of actual tests for T2DM diagnosis. However, the use of both Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) has been limited for T2DM diagnosis or follow-up. Objective: To gather information regarding the use of Raman spectroscopy and SERS to evaluate the spectra of biofluids (blood components, saliva, and urine) and tissues (skin) as an early diagnostic tool or follow-up for T2DM. Results: Skin and biofluids provide a great amount of information that can be analyzed by Raman spectroscopy and SERS. These optical techniques are excellent for clinical applications and can differentiate people with T2DM from healthy individuals, predict complications arising from T2DM (chronic kidney disease), and might be used to monitor glucose (glycemic control). Conclusion: Raman spectroscopy and SERS are good optical techniques for the diagnosis of T2DM in which sample preparation is not necessary or very simple, non-destructive, non-invasive, relatively fast to acquire, and low-cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.
期刊最新文献
Covid-19 pandemic has been a set-back for scientific productivity and the road to recovery must focus on improving the mental health and well-being of scientists Portable NMR for the investigation of models of mammographic density ex vivo: Androgens antagonise the promotional effect of oestrogen A method to detect thermal damage in bovine liver utilising diffuse reflectance spectroscopy Clinical applications of spectroscopic techniques in conjunction with multivariate analysis in virus diagnosis Determination of arsenic, cadmium, selenium, zinc and other trace elements in Bangladeshi fish and arsenic speciation study of Hilsa fish flesh and eggs: Implications for dietary intake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1