Yuxun Ding, Xiaohui Xiao, Lu Bai, Bowen Yang, Guanghui Lin, Lingli Zeng, Lisi Xie, Lei Li, Xiaohui Duan, Jun Shen, Jianhua Zhou, Yue Pan
{"title":"通过双靶向SPION@polymer杂交纳米增敏剂增强鼻咽癌的放射敏感性和放化疗疗效","authors":"Yuxun Ding, Xiaohui Xiao, Lu Bai, Bowen Yang, Guanghui Lin, Lingli Zeng, Lisi Xie, Lei Li, Xiaohui Duan, Jun Shen, Jianhua Zhou, Yue Pan","doi":"10.1038/s41427-023-00484-x","DOIUrl":null,"url":null,"abstract":"Cisplatin-based nanoparticles show good potential in enhancing the effect of nasopharynx carcinoma (NPC) therapy but are still limited by their low radiation sensitization and poor tumor targeting ability. Herein, an ingenious design of multifunctional superparamagnetic iron oxide nanoparticle (SPION)@polymer hybrid nanosensitizer (SPHN) with enhanced radiosensitization and dual-targeting capability is described. SPHN have a core-shell structure, in which radiosensitizer superparamagnetic iron oxide particle (SPION) and cis-platinum (CDDP) are encapsulated in RGD-conjugated amphiphilic block copolymers. These unique structures endow SPHN with outstanding radiosensitization and tumor targeting abilities. When combined with X-rays, SPHN showed strong promotion of the apoptosis of CNE-1 cells in vitro. In addition, RNA-seq and KEGG enrichment analyses indicated that the PI3K-Akt and TNF signaling pathways were closely related to the molecular mechanism of SPHN in chemoradiotherapy. Furthermore, gene set enrichment analysis (GSEA) revealed that SPHN + X-rays treatment decreased translation initiation pathways and the cytoplasmic translation pathway. Through a combination of radiation and chemotherapy, SPHN can achieve remarkable inhibition of tumor growth in vivo, making this nanotechnology a general platform for the chemoradiation therapy of NPC in the future. SPHNs can effectively accumulate in solid tumor via magnetic-RGD dual-targeting effect for valid CDDP delivery, resulting in a significantly improved antitumor effect with minimal side effects.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-12"},"PeriodicalIF":8.6000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00484-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced radiosensitivity and chemoradiation efficacy in nasopharyngeal carcinoma via a dual-targeted SPION@polymer hybrid nanosensitizer\",\"authors\":\"Yuxun Ding, Xiaohui Xiao, Lu Bai, Bowen Yang, Guanghui Lin, Lingli Zeng, Lisi Xie, Lei Li, Xiaohui Duan, Jun Shen, Jianhua Zhou, Yue Pan\",\"doi\":\"10.1038/s41427-023-00484-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cisplatin-based nanoparticles show good potential in enhancing the effect of nasopharynx carcinoma (NPC) therapy but are still limited by their low radiation sensitization and poor tumor targeting ability. Herein, an ingenious design of multifunctional superparamagnetic iron oxide nanoparticle (SPION)@polymer hybrid nanosensitizer (SPHN) with enhanced radiosensitization and dual-targeting capability is described. SPHN have a core-shell structure, in which radiosensitizer superparamagnetic iron oxide particle (SPION) and cis-platinum (CDDP) are encapsulated in RGD-conjugated amphiphilic block copolymers. These unique structures endow SPHN with outstanding radiosensitization and tumor targeting abilities. When combined with X-rays, SPHN showed strong promotion of the apoptosis of CNE-1 cells in vitro. In addition, RNA-seq and KEGG enrichment analyses indicated that the PI3K-Akt and TNF signaling pathways were closely related to the molecular mechanism of SPHN in chemoradiotherapy. Furthermore, gene set enrichment analysis (GSEA) revealed that SPHN + X-rays treatment decreased translation initiation pathways and the cytoplasmic translation pathway. Through a combination of radiation and chemotherapy, SPHN can achieve remarkable inhibition of tumor growth in vivo, making this nanotechnology a general platform for the chemoradiation therapy of NPC in the future. SPHNs can effectively accumulate in solid tumor via magnetic-RGD dual-targeting effect for valid CDDP delivery, resulting in a significantly improved antitumor effect with minimal side effects.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"15 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-023-00484-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-023-00484-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-023-00484-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced radiosensitivity and chemoradiation efficacy in nasopharyngeal carcinoma via a dual-targeted SPION@polymer hybrid nanosensitizer
Cisplatin-based nanoparticles show good potential in enhancing the effect of nasopharynx carcinoma (NPC) therapy but are still limited by their low radiation sensitization and poor tumor targeting ability. Herein, an ingenious design of multifunctional superparamagnetic iron oxide nanoparticle (SPION)@polymer hybrid nanosensitizer (SPHN) with enhanced radiosensitization and dual-targeting capability is described. SPHN have a core-shell structure, in which radiosensitizer superparamagnetic iron oxide particle (SPION) and cis-platinum (CDDP) are encapsulated in RGD-conjugated amphiphilic block copolymers. These unique structures endow SPHN with outstanding radiosensitization and tumor targeting abilities. When combined with X-rays, SPHN showed strong promotion of the apoptosis of CNE-1 cells in vitro. In addition, RNA-seq and KEGG enrichment analyses indicated that the PI3K-Akt and TNF signaling pathways were closely related to the molecular mechanism of SPHN in chemoradiotherapy. Furthermore, gene set enrichment analysis (GSEA) revealed that SPHN + X-rays treatment decreased translation initiation pathways and the cytoplasmic translation pathway. Through a combination of radiation and chemotherapy, SPHN can achieve remarkable inhibition of tumor growth in vivo, making this nanotechnology a general platform for the chemoradiation therapy of NPC in the future. SPHNs can effectively accumulate in solid tumor via magnetic-RGD dual-targeting effect for valid CDDP delivery, resulting in a significantly improved antitumor effect with minimal side effects.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.