通过双靶向SPION@polymer杂交纳米增敏剂增强鼻咽癌的放射敏感性和放化疗疗效

IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Npg Asia Materials Pub Date : 2023-06-23 DOI:10.1038/s41427-023-00484-x
Yuxun Ding, Xiaohui Xiao, Lu Bai, Bowen Yang, Guanghui Lin, Lingli Zeng, Lisi Xie, Lei Li, Xiaohui Duan, Jun Shen, Jianhua Zhou, Yue Pan
{"title":"通过双靶向SPION@polymer杂交纳米增敏剂增强鼻咽癌的放射敏感性和放化疗疗效","authors":"Yuxun Ding, Xiaohui Xiao, Lu Bai, Bowen Yang, Guanghui Lin, Lingli Zeng, Lisi Xie, Lei Li, Xiaohui Duan, Jun Shen, Jianhua Zhou, Yue Pan","doi":"10.1038/s41427-023-00484-x","DOIUrl":null,"url":null,"abstract":"Cisplatin-based nanoparticles show good potential in enhancing the effect of nasopharynx carcinoma (NPC) therapy but are still limited by their low radiation sensitization and poor tumor targeting ability. Herein, an ingenious design of multifunctional superparamagnetic iron oxide nanoparticle (SPION)@polymer hybrid nanosensitizer (SPHN) with enhanced radiosensitization and dual-targeting capability is described. SPHN have a core-shell structure, in which radiosensitizer superparamagnetic iron oxide particle (SPION) and cis-platinum (CDDP) are encapsulated in RGD-conjugated amphiphilic block copolymers. These unique structures endow SPHN with outstanding radiosensitization and tumor targeting abilities. When combined with X-rays, SPHN showed strong promotion of the apoptosis of CNE-1 cells in vitro. In addition, RNA-seq and KEGG enrichment analyses indicated that the PI3K-Akt and TNF signaling pathways were closely related to the molecular mechanism of SPHN in chemoradiotherapy. Furthermore, gene set enrichment analysis (GSEA) revealed that SPHN + X-rays treatment decreased translation initiation pathways and the cytoplasmic translation pathway. Through a combination of radiation and chemotherapy, SPHN can achieve remarkable inhibition of tumor growth in vivo, making this nanotechnology a general platform for the chemoradiation therapy of NPC in the future. SPHNs can effectively accumulate in solid tumor via magnetic-RGD dual-targeting effect for valid CDDP delivery, resulting in a significantly improved antitumor effect with minimal side effects.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-12"},"PeriodicalIF":8.6000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00484-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced radiosensitivity and chemoradiation efficacy in nasopharyngeal carcinoma via a dual-targeted SPION@polymer hybrid nanosensitizer\",\"authors\":\"Yuxun Ding, Xiaohui Xiao, Lu Bai, Bowen Yang, Guanghui Lin, Lingli Zeng, Lisi Xie, Lei Li, Xiaohui Duan, Jun Shen, Jianhua Zhou, Yue Pan\",\"doi\":\"10.1038/s41427-023-00484-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cisplatin-based nanoparticles show good potential in enhancing the effect of nasopharynx carcinoma (NPC) therapy but are still limited by their low radiation sensitization and poor tumor targeting ability. Herein, an ingenious design of multifunctional superparamagnetic iron oxide nanoparticle (SPION)@polymer hybrid nanosensitizer (SPHN) with enhanced radiosensitization and dual-targeting capability is described. SPHN have a core-shell structure, in which radiosensitizer superparamagnetic iron oxide particle (SPION) and cis-platinum (CDDP) are encapsulated in RGD-conjugated amphiphilic block copolymers. These unique structures endow SPHN with outstanding radiosensitization and tumor targeting abilities. When combined with X-rays, SPHN showed strong promotion of the apoptosis of CNE-1 cells in vitro. In addition, RNA-seq and KEGG enrichment analyses indicated that the PI3K-Akt and TNF signaling pathways were closely related to the molecular mechanism of SPHN in chemoradiotherapy. Furthermore, gene set enrichment analysis (GSEA) revealed that SPHN + X-rays treatment decreased translation initiation pathways and the cytoplasmic translation pathway. Through a combination of radiation and chemotherapy, SPHN can achieve remarkable inhibition of tumor growth in vivo, making this nanotechnology a general platform for the chemoradiation therapy of NPC in the future. SPHNs can effectively accumulate in solid tumor via magnetic-RGD dual-targeting effect for valid CDDP delivery, resulting in a significantly improved antitumor effect with minimal side effects.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"15 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-023-00484-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-023-00484-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-023-00484-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced radiosensitivity and chemoradiation efficacy in nasopharyngeal carcinoma via a dual-targeted SPION@polymer hybrid nanosensitizer
Cisplatin-based nanoparticles show good potential in enhancing the effect of nasopharynx carcinoma (NPC) therapy but are still limited by their low radiation sensitization and poor tumor targeting ability. Herein, an ingenious design of multifunctional superparamagnetic iron oxide nanoparticle (SPION)@polymer hybrid nanosensitizer (SPHN) with enhanced radiosensitization and dual-targeting capability is described. SPHN have a core-shell structure, in which radiosensitizer superparamagnetic iron oxide particle (SPION) and cis-platinum (CDDP) are encapsulated in RGD-conjugated amphiphilic block copolymers. These unique structures endow SPHN with outstanding radiosensitization and tumor targeting abilities. When combined with X-rays, SPHN showed strong promotion of the apoptosis of CNE-1 cells in vitro. In addition, RNA-seq and KEGG enrichment analyses indicated that the PI3K-Akt and TNF signaling pathways were closely related to the molecular mechanism of SPHN in chemoradiotherapy. Furthermore, gene set enrichment analysis (GSEA) revealed that SPHN + X-rays treatment decreased translation initiation pathways and the cytoplasmic translation pathway. Through a combination of radiation and chemotherapy, SPHN can achieve remarkable inhibition of tumor growth in vivo, making this nanotechnology a general platform for the chemoradiation therapy of NPC in the future. SPHNs can effectively accumulate in solid tumor via magnetic-RGD dual-targeting effect for valid CDDP delivery, resulting in a significantly improved antitumor effect with minimal side effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
期刊最新文献
Relationship between network topology and negative electrode properties in Wadsley–Roth phase TiNb2O7 Recent advances in high-entropy superconductors Intrinsically anisotropic 1D NbTe4 for self-powered polarization-sensitive photodetection Band anisotropy and effective mass renormalization in strained metallic VO2 (101) thin films Molecular beam epitaxial In2Te3 electronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1