Dahai Hao , Jie Yang , Weibiao Long , Jing Yi , Peter VanderZaag , Canhui Li
{"title":"马铃薯对疫霉持久抗性的多个R基因和酚类化合物合成88年合作","authors":"Dahai Hao , Jie Yang , Weibiao Long , Jing Yi , Peter VanderZaag , Canhui Li","doi":"10.1016/j.aggene.2018.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Late blight (LB), <em>Phytophthora infestans</em> (PI) as pathogen, is the most devastating disease limiting potato production globally. In the Tropic highlands it can reduce yields by >50%. Cooperation-88 (C88) is a potato variety with high levels of durable resistance to PI, even after being widely grown for over 20 years. To more fully understand the mechanism of the resistance to PI of this variety, we inoculated detached leaves of young C88 plants with PI isolate XA-4 (super race with vir 1–11). Samples of one day post pathogen inoculation (1 dpi), 3 dpi, 5 dpi and control treated with sterile water were collected and frozen with liquid nitrogen. Transcriptomes of these 4 samples were sequenced by the next-generation sequencing platform Illumina Hiseq 2000. Totally ~68 M clean reads were obtained. With the genome of <em>S. phureja</em> clone DM1–3 516R44 as reference, these clean reads were processed by GO analysis, KEGG pathway enrichment analysis and differential expression analysis. PI inoculation of C88 leaves resulted in the following: a) in the 3 pathogen inoculated samples, 3950 were differentially regulated compared to those in the control; c) at 1 dpi increased expression genes were nearly double the number of decreased expression genes; d) 665 genes were differentially expressed in every treatments; e) gene expression levels in photosynthesis and the chloroplast were mostly diminished. The high durable late blight resistance C88 is composed of: a) 344 expressed R genes; b) 9 pathogenesis-related genes, particularly osmotin gene and endochitinase gene expressions increased dramatically with PI inoculation; c) thirty genes for phenolic compounds synthesis expressions increased with PI inoculation from small to large multiples compared to the control; and d) R genes need pathogenesis proteins and phenolic compounds to have superior durable resistance to PI.</p></div>","PeriodicalId":37751,"journal":{"name":"Agri Gene","volume":"8 ","pages":"Pages 28-36"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aggene.2018.04.001","citationCount":"6","resultStr":"{\"title\":\"Multiple R genes and phenolic compounds synthesis involved in the durable resistance to Phytophthora infestans in potato cv. Cooperation 88\",\"authors\":\"Dahai Hao , Jie Yang , Weibiao Long , Jing Yi , Peter VanderZaag , Canhui Li\",\"doi\":\"10.1016/j.aggene.2018.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Late blight (LB), <em>Phytophthora infestans</em> (PI) as pathogen, is the most devastating disease limiting potato production globally. In the Tropic highlands it can reduce yields by >50%. Cooperation-88 (C88) is a potato variety with high levels of durable resistance to PI, even after being widely grown for over 20 years. To more fully understand the mechanism of the resistance to PI of this variety, we inoculated detached leaves of young C88 plants with PI isolate XA-4 (super race with vir 1–11). Samples of one day post pathogen inoculation (1 dpi), 3 dpi, 5 dpi and control treated with sterile water were collected and frozen with liquid nitrogen. Transcriptomes of these 4 samples were sequenced by the next-generation sequencing platform Illumina Hiseq 2000. Totally ~68 M clean reads were obtained. With the genome of <em>S. phureja</em> clone DM1–3 516R44 as reference, these clean reads were processed by GO analysis, KEGG pathway enrichment analysis and differential expression analysis. PI inoculation of C88 leaves resulted in the following: a) in the 3 pathogen inoculated samples, 3950 were differentially regulated compared to those in the control; c) at 1 dpi increased expression genes were nearly double the number of decreased expression genes; d) 665 genes were differentially expressed in every treatments; e) gene expression levels in photosynthesis and the chloroplast were mostly diminished. The high durable late blight resistance C88 is composed of: a) 344 expressed R genes; b) 9 pathogenesis-related genes, particularly osmotin gene and endochitinase gene expressions increased dramatically with PI inoculation; c) thirty genes for phenolic compounds synthesis expressions increased with PI inoculation from small to large multiples compared to the control; and d) R genes need pathogenesis proteins and phenolic compounds to have superior durable resistance to PI.</p></div>\",\"PeriodicalId\":37751,\"journal\":{\"name\":\"Agri Gene\",\"volume\":\"8 \",\"pages\":\"Pages 28-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aggene.2018.04.001\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agri Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352215118300072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agri Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352215118300072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Multiple R genes and phenolic compounds synthesis involved in the durable resistance to Phytophthora infestans in potato cv. Cooperation 88
Late blight (LB), Phytophthora infestans (PI) as pathogen, is the most devastating disease limiting potato production globally. In the Tropic highlands it can reduce yields by >50%. Cooperation-88 (C88) is a potato variety with high levels of durable resistance to PI, even after being widely grown for over 20 years. To more fully understand the mechanism of the resistance to PI of this variety, we inoculated detached leaves of young C88 plants with PI isolate XA-4 (super race with vir 1–11). Samples of one day post pathogen inoculation (1 dpi), 3 dpi, 5 dpi and control treated with sterile water were collected and frozen with liquid nitrogen. Transcriptomes of these 4 samples were sequenced by the next-generation sequencing platform Illumina Hiseq 2000. Totally ~68 M clean reads were obtained. With the genome of S. phureja clone DM1–3 516R44 as reference, these clean reads were processed by GO analysis, KEGG pathway enrichment analysis and differential expression analysis. PI inoculation of C88 leaves resulted in the following: a) in the 3 pathogen inoculated samples, 3950 were differentially regulated compared to those in the control; c) at 1 dpi increased expression genes were nearly double the number of decreased expression genes; d) 665 genes were differentially expressed in every treatments; e) gene expression levels in photosynthesis and the chloroplast were mostly diminished. The high durable late blight resistance C88 is composed of: a) 344 expressed R genes; b) 9 pathogenesis-related genes, particularly osmotin gene and endochitinase gene expressions increased dramatically with PI inoculation; c) thirty genes for phenolic compounds synthesis expressions increased with PI inoculation from small to large multiples compared to the control; and d) R genes need pathogenesis proteins and phenolic compounds to have superior durable resistance to PI.
Agri GeneAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
自引率
0.00%
发文量
0
期刊介绍:
Agri Gene publishes papers that focus on the regulation, expression, function and evolution of genes in crop plants, farm animals, and agriculturally important insects and microorganisms. Agri Gene strives to be a diverse journal and topics in multiple fields will be considered for publication so long as their main focus is on agriculturally important organisms (plants, animals, insects, or microorganisms). Although not limited to the following, some examples of potential topics include: Gene discovery and characterization. Genetic markers to guide traditional breeding. Genetic effects of transposable elements. Evolutionary genetics, molecular evolution, population genetics, and phylogenetics. Profiling of gene expression and genetic variation. Biotechnology and crop or livestock improvement. Genetic improvement of biological control microorganisms. Genetic control of secondary metabolic pathways and metabolic enzymes of crop pathogens. Transcription analysis of beneficial or pest insect developmental stages Agri Gene encourages submission of novel manuscripts that present a reasonable level of analysis, functional relevance and/or mechanistic insight. Agri Gene also welcomes papers that have predominantly a descriptive component but improve the essential basis of knowledge for subsequent functional studies, or which provide important confirmation of recently published discoveries provided that the information is new.