{"title":"GOCE重力张量对角分量反演反演重力异常的区域恢复——以埃塞俄比亚为例","authors":"M. Eshagh, Andenet A. Gedamu, T. Bedada","doi":"10.2478/arsa-2018-0006","DOIUrl":null,"url":null,"abstract":"Abstract The tensor of gravitation is traceless as the gravitational field of the Earth is harmonic outside the Earth’s surface. Therefore, summation of the 2nd-order horizontal derivatives on its diagonal components should be equal to the radial one but with the opposite sign. The gravity field can be recovered locally from either of them, or even their combination. Here, we use the in-orbit diagonal components of the gravitational tensor measured by the gravity field and steady state ocean circulation explorer (GOCE) mission for recovering gravity anomaly with a resolution of 1°×1° at sea level in Ethiopia. In order to solve the system of equations, derived after discretisation of integral equations, the Tikhonov regularisation is applied and the bias of this regularisation is estimated and removed from the estimated gravity anomalies. The errors of the anomalies are estimated and their significance of recovery from these diagonal components is investigated. Statistically, the difference between the recovered anomalies from each scenario is not significant comparing to their errors. However, their joint inversion of the diagonal components improved the solution by about 1 mGal. Furthermore, the inversion processes are better stabilised when using errors of the input data compared with its exclusion, but at the penalty of degradation in accuracy of the estimates.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":"53 1","pages":"55 - 74"},"PeriodicalIF":0.7000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regional Recovery of Gravity Anomaly from the Inversion of Diagonal Components of GOCE Gravitational Tensor: A Case Study in Ethiopia\",\"authors\":\"M. Eshagh, Andenet A. Gedamu, T. Bedada\",\"doi\":\"10.2478/arsa-2018-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The tensor of gravitation is traceless as the gravitational field of the Earth is harmonic outside the Earth’s surface. Therefore, summation of the 2nd-order horizontal derivatives on its diagonal components should be equal to the radial one but with the opposite sign. The gravity field can be recovered locally from either of them, or even their combination. Here, we use the in-orbit diagonal components of the gravitational tensor measured by the gravity field and steady state ocean circulation explorer (GOCE) mission for recovering gravity anomaly with a resolution of 1°×1° at sea level in Ethiopia. In order to solve the system of equations, derived after discretisation of integral equations, the Tikhonov regularisation is applied and the bias of this regularisation is estimated and removed from the estimated gravity anomalies. The errors of the anomalies are estimated and their significance of recovery from these diagonal components is investigated. Statistically, the difference between the recovered anomalies from each scenario is not significant comparing to their errors. However, their joint inversion of the diagonal components improved the solution by about 1 mGal. Furthermore, the inversion processes are better stabilised when using errors of the input data compared with its exclusion, but at the penalty of degradation in accuracy of the estimates.\",\"PeriodicalId\":43216,\"journal\":{\"name\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"volume\":\"53 1\",\"pages\":\"55 - 74\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/arsa-2018-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/arsa-2018-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Regional Recovery of Gravity Anomaly from the Inversion of Diagonal Components of GOCE Gravitational Tensor: A Case Study in Ethiopia
Abstract The tensor of gravitation is traceless as the gravitational field of the Earth is harmonic outside the Earth’s surface. Therefore, summation of the 2nd-order horizontal derivatives on its diagonal components should be equal to the radial one but with the opposite sign. The gravity field can be recovered locally from either of them, or even their combination. Here, we use the in-orbit diagonal components of the gravitational tensor measured by the gravity field and steady state ocean circulation explorer (GOCE) mission for recovering gravity anomaly with a resolution of 1°×1° at sea level in Ethiopia. In order to solve the system of equations, derived after discretisation of integral equations, the Tikhonov regularisation is applied and the bias of this regularisation is estimated and removed from the estimated gravity anomalies. The errors of the anomalies are estimated and their significance of recovery from these diagonal components is investigated. Statistically, the difference between the recovered anomalies from each scenario is not significant comparing to their errors. However, their joint inversion of the diagonal components improved the solution by about 1 mGal. Furthermore, the inversion processes are better stabilised when using errors of the input data compared with its exclusion, but at the penalty of degradation in accuracy of the estimates.