使用不同数据挖掘算法预测旁遮普南部养殖的菌体羊体重

A. Abbas, M. A. Ullah, A. Waheed
{"title":"使用不同数据挖掘算法预测旁遮普南部养殖的菌体羊体重","authors":"A. Abbas, M. A. Ullah, A. Waheed","doi":"10.53560/ppasa(58-2)603","DOIUrl":null,"url":null,"abstract":"This study is conducted to predict the body weight (BW) for Thalli sheep of southern Punjab from different body measurements. In the BW prediction, several body measurements viz., withers height, body length, head length, head width, ear length, ear width, neck length, neck width, heart girth, rump length, rump width, tail length, barrel depth and sacral pelvic width are used as predictors. The data mining algorithms such as Chi-square Automatic Interaction Detector (CHAID), Exhaustive CHAID, Classification and Regression Tree (CART) and Artificial Neural Network (ANN) are used to predict the BW for a total of 85 female Thalli sheep. The data set is partitioned into training (80 %) and test (20 %) sets before the algorithms are used. The minimum number of parent (4) and child nodes (2) are set in order to ensure their predictive ability. The R2 % and RMSE values for CHAID, Exhaustive CHAID, ANN and CART algorithms are 67.38(1.003), 64.37(1.049), 61.45(1.093) and 59.02(1.125), respectively. The mostsignificant predictor is BL in the BW prediction of Thalli sheep. The heaviest BW average of 9.596 kg is obtained from the subgroup of those having BL > 25.000 inches. On behalf of the several goodness of fit criteria, we conclude that the CHAID algorithm performance is better in order to predict the BW of Thalli sheep and more suitable decision tree diagram visually. Also, the obtained CHAID results may help to determine body measurements positively associated with BW for developing better selection strategies with the scope of indirect selection criteria.","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Body Weight Prediction of Thalli Sheep Reared in Southern Punjab Using Different Data Mining Algorithms\",\"authors\":\"A. Abbas, M. A. Ullah, A. Waheed\",\"doi\":\"10.53560/ppasa(58-2)603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is conducted to predict the body weight (BW) for Thalli sheep of southern Punjab from different body measurements. In the BW prediction, several body measurements viz., withers height, body length, head length, head width, ear length, ear width, neck length, neck width, heart girth, rump length, rump width, tail length, barrel depth and sacral pelvic width are used as predictors. The data mining algorithms such as Chi-square Automatic Interaction Detector (CHAID), Exhaustive CHAID, Classification and Regression Tree (CART) and Artificial Neural Network (ANN) are used to predict the BW for a total of 85 female Thalli sheep. The data set is partitioned into training (80 %) and test (20 %) sets before the algorithms are used. The minimum number of parent (4) and child nodes (2) are set in order to ensure their predictive ability. The R2 % and RMSE values for CHAID, Exhaustive CHAID, ANN and CART algorithms are 67.38(1.003), 64.37(1.049), 61.45(1.093) and 59.02(1.125), respectively. The mostsignificant predictor is BL in the BW prediction of Thalli sheep. The heaviest BW average of 9.596 kg is obtained from the subgroup of those having BL > 25.000 inches. On behalf of the several goodness of fit criteria, we conclude that the CHAID algorithm performance is better in order to predict the BW of Thalli sheep and more suitable decision tree diagram visually. Also, the obtained CHAID results may help to determine body measurements positively associated with BW for developing better selection strategies with the scope of indirect selection criteria.\",\"PeriodicalId\":36961,\"journal\":{\"name\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53560/ppasa(58-2)603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(58-2)603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2

摘要

本研究旨在通过不同的体重测量来预测旁遮普南部塔利羊的体重。在体重预测中,几种身体测量指标,即肩高、体长、头长、头宽、耳长、耳宽、颈长、颈宽、胸围、臀长、臀宽、尾长、桶深和骶骨骨盆宽度被用作预测指标。采用卡方自动交互检测器(CHAID)、穷出式CHAID、分类与回归树(CART)和人工神经网络(ANN)等数据挖掘算法,对85只母羊的体重进行了预测。在使用算法之前,数据集被划分为训练集(80%)和测试集(20%)。为了保证父节点和子节点的预测能力,设置父节点和子节点的最小个数分别为4和2。CHAID、穷出式CHAID、ANN和CART算法的R2 %和RMSE分别为67.38(1.003)、64.37(1.049)、61.45(1.093)和59.02(1.125)。在预测菌体羊体重时,最显著的预测因子是BL。最重的平均体重为9.596公斤,来自那些体重为25.000英寸的亚组。通过对多个拟合优度准则的比较,我们得出结论:CHAID算法在预测菌体羊体重方面具有较好的性能,能够更直观地预测出更合适的决策树图。此外,获得的CHAID结果可能有助于确定与体重呈正相关的身体测量,从而在间接选择标准范围内制定更好的选择策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Body Weight Prediction of Thalli Sheep Reared in Southern Punjab Using Different Data Mining Algorithms
This study is conducted to predict the body weight (BW) for Thalli sheep of southern Punjab from different body measurements. In the BW prediction, several body measurements viz., withers height, body length, head length, head width, ear length, ear width, neck length, neck width, heart girth, rump length, rump width, tail length, barrel depth and sacral pelvic width are used as predictors. The data mining algorithms such as Chi-square Automatic Interaction Detector (CHAID), Exhaustive CHAID, Classification and Regression Tree (CART) and Artificial Neural Network (ANN) are used to predict the BW for a total of 85 female Thalli sheep. The data set is partitioned into training (80 %) and test (20 %) sets before the algorithms are used. The minimum number of parent (4) and child nodes (2) are set in order to ensure their predictive ability. The R2 % and RMSE values for CHAID, Exhaustive CHAID, ANN and CART algorithms are 67.38(1.003), 64.37(1.049), 61.45(1.093) and 59.02(1.125), respectively. The mostsignificant predictor is BL in the BW prediction of Thalli sheep. The heaviest BW average of 9.596 kg is obtained from the subgroup of those having BL > 25.000 inches. On behalf of the several goodness of fit criteria, we conclude that the CHAID algorithm performance is better in order to predict the BW of Thalli sheep and more suitable decision tree diagram visually. Also, the obtained CHAID results may help to determine body measurements positively associated with BW for developing better selection strategies with the scope of indirect selection criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Pakistan Academy of Sciences: Part A
Proceedings of the Pakistan Academy of Sciences: Part A Computer Science-Computer Science (all)
CiteScore
0.70
自引率
0.00%
发文量
15
期刊最新文献
Practical Analysis of Tap Water Dissolved Solids Efficient Reduction Acoustical Analysis of Insertion Losses of Ceiling Materials Blockchain in Healthcare: A Comprehensive Survey of Implementations and a Secure Model Proposal Design and Development of Neutronics and Thermal Hydraulics Modeling Code for ACP1000 Nuclear Reactor Dynamics in LabVIEW Quantum Computer Architecture: A Quantum Circuit-Based Approach Towards Quantum Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1