Liu Liang, Zhang Baoji, Zhang Hao, Hailin Tang, Weijie Wang
{"title":"基于流固耦合的船用螺旋桨水动力性能优化","authors":"Liu Liang, Zhang Baoji, Zhang Hao, Hailin Tang, Weijie Wang","doi":"10.21278/brod74308","DOIUrl":null,"url":null,"abstract":"Fiber-reinforced composites offer the benefits of high strength, high stiffness, lightweight, superior damping performance, and great design capability when compared to metal. The rigidity characteristics of the composite laminate in different directions may be adjusted to meet the requirements of the application by using appropriate materials and arranging the lay-up sequence. As a result, the purpose of this work is to explore the influence of lay-up type on propeller performance in terms of both hydrodynamic and structural performance. A transient fluid-structure interaction (FSI) algorithm based on the finite element method (FEM) combined with the computational fluid dynamics (CFD) technique is developed and used for the analysis of composite propellers. The hydrodynamic performance of the propeller is compared to that of a metallic material. Propeller propulsion efficiency, structural deformation, equivalent stress, and damage performance of different lay-up options under three different operating situations are compared. In addition, it is presented a parametric optimization approach to get the most appropriate lay-up program for composite blades with the best hydrodynamic properties and structural performance.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydrodynamic performance optimization of marine propellers based on fluid-structure coupling\",\"authors\":\"Liu Liang, Zhang Baoji, Zhang Hao, Hailin Tang, Weijie Wang\",\"doi\":\"10.21278/brod74308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fiber-reinforced composites offer the benefits of high strength, high stiffness, lightweight, superior damping performance, and great design capability when compared to metal. The rigidity characteristics of the composite laminate in different directions may be adjusted to meet the requirements of the application by using appropriate materials and arranging the lay-up sequence. As a result, the purpose of this work is to explore the influence of lay-up type on propeller performance in terms of both hydrodynamic and structural performance. A transient fluid-structure interaction (FSI) algorithm based on the finite element method (FEM) combined with the computational fluid dynamics (CFD) technique is developed and used for the analysis of composite propellers. The hydrodynamic performance of the propeller is compared to that of a metallic material. Propeller propulsion efficiency, structural deformation, equivalent stress, and damage performance of different lay-up options under three different operating situations are compared. In addition, it is presented a parametric optimization approach to get the most appropriate lay-up program for composite blades with the best hydrodynamic properties and structural performance.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod74308\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod74308","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Hydrodynamic performance optimization of marine propellers based on fluid-structure coupling
Fiber-reinforced composites offer the benefits of high strength, high stiffness, lightweight, superior damping performance, and great design capability when compared to metal. The rigidity characteristics of the composite laminate in different directions may be adjusted to meet the requirements of the application by using appropriate materials and arranging the lay-up sequence. As a result, the purpose of this work is to explore the influence of lay-up type on propeller performance in terms of both hydrodynamic and structural performance. A transient fluid-structure interaction (FSI) algorithm based on the finite element method (FEM) combined with the computational fluid dynamics (CFD) technique is developed and used for the analysis of composite propellers. The hydrodynamic performance of the propeller is compared to that of a metallic material. Propeller propulsion efficiency, structural deformation, equivalent stress, and damage performance of different lay-up options under three different operating situations are compared. In addition, it is presented a parametric optimization approach to get the most appropriate lay-up program for composite blades with the best hydrodynamic properties and structural performance.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.