针对时间扩展的多机器人任务的机器人联盟形成

M. U. Arif
{"title":"针对时间扩展的多机器人任务的机器人联盟形成","authors":"M. U. Arif","doi":"10.1108/ijius-12-2020-0070","DOIUrl":null,"url":null,"abstract":"PurposeMulti-robot coalition formation (MRCF) refers to the formation of robot coalitions against complex tasks requiring multiple robots for execution. Situations, where the robots have to participate in multiple coalitions over time due to a large number of tasks, are called Time-extended MRCF. While being NP-hard, time-extended MRCF also holds the possibility of resource deadlocks due to any cyclic hold-and-wait conditions among the coalitions. Existing schemes compromise on solution quality to form workable, deadlock-free coalitions through instantaneous or incremental allocations.Design/methodology/approachThis paper presents an evolutionary algorithm (EA)-based task allocation framework for improved, deadlock-free solutions against time-extended MRCF. The framework simultaneously allocates multiple tasks, allowing the robots to participate in multiple coalitions within their schedule. A directed acyclic graph–based representation of robot plans is used for deadlock detection and avoidance.FindingsAllowing the robots to participate in multiple coalitions within their schedule, significantly improves the allocation quality. The improved allocation quality of the EA is validated against two auction schemes inspired by the literature.Originality/valueTo the best of the author's knowledge, this is the first framework which simultaneously considers multiple MR tasks for deadlock-free allocation while allowing the robots to participate in multiple coalitions within their plans.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robot coalition formation against time-extended multi-robot tasks\",\"authors\":\"M. U. Arif\",\"doi\":\"10.1108/ijius-12-2020-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeMulti-robot coalition formation (MRCF) refers to the formation of robot coalitions against complex tasks requiring multiple robots for execution. Situations, where the robots have to participate in multiple coalitions over time due to a large number of tasks, are called Time-extended MRCF. While being NP-hard, time-extended MRCF also holds the possibility of resource deadlocks due to any cyclic hold-and-wait conditions among the coalitions. Existing schemes compromise on solution quality to form workable, deadlock-free coalitions through instantaneous or incremental allocations.Design/methodology/approachThis paper presents an evolutionary algorithm (EA)-based task allocation framework for improved, deadlock-free solutions against time-extended MRCF. The framework simultaneously allocates multiple tasks, allowing the robots to participate in multiple coalitions within their schedule. A directed acyclic graph–based representation of robot plans is used for deadlock detection and avoidance.FindingsAllowing the robots to participate in multiple coalitions within their schedule, significantly improves the allocation quality. The improved allocation quality of the EA is validated against two auction schemes inspired by the literature.Originality/valueTo the best of the author's knowledge, this is the first framework which simultaneously considers multiple MR tasks for deadlock-free allocation while allowing the robots to participate in multiple coalitions within their plans.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-12-2020-0070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-12-2020-0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 3

摘要

多机器人联盟形成(MRCF)是指针对需要多个机器人执行的复杂任务而形成的机器人联盟。由于大量的任务,机器人必须在一段时间内参与多个联盟的情况被称为时间扩展MRCF。虽然是NP-hard,但由于联盟之间的任何循环保持和等待条件,延长时间的MRCF也存在资源死锁的可能性。现有方案在解决方案质量上妥协,通过瞬时或增量分配形成可行的、无死锁的联盟。设计/方法/方法本文提出了一种基于进化算法(EA)的任务分配框架,用于改进的无死锁解决方案,以对抗时间延长的MRCF。该框架同时分配多个任务,允许机器人在其时间表内参与多个联盟。机器人计划的有向无环图表示用于死锁检测和避免。发现允许机器人在其时间表内参与多个联盟,可显著提高分配质量。改进的EA分配质量在两种拍卖方案中得到了验证。原创性/价值据作者所知,这是第一个同时考虑多个MR任务进行无死锁分配,同时允许机器人在其计划内参与多个联盟的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robot coalition formation against time-extended multi-robot tasks
PurposeMulti-robot coalition formation (MRCF) refers to the formation of robot coalitions against complex tasks requiring multiple robots for execution. Situations, where the robots have to participate in multiple coalitions over time due to a large number of tasks, are called Time-extended MRCF. While being NP-hard, time-extended MRCF also holds the possibility of resource deadlocks due to any cyclic hold-and-wait conditions among the coalitions. Existing schemes compromise on solution quality to form workable, deadlock-free coalitions through instantaneous or incremental allocations.Design/methodology/approachThis paper presents an evolutionary algorithm (EA)-based task allocation framework for improved, deadlock-free solutions against time-extended MRCF. The framework simultaneously allocates multiple tasks, allowing the robots to participate in multiple coalitions within their schedule. A directed acyclic graph–based representation of robot plans is used for deadlock detection and avoidance.FindingsAllowing the robots to participate in multiple coalitions within their schedule, significantly improves the allocation quality. The improved allocation quality of the EA is validated against two auction schemes inspired by the literature.Originality/valueTo the best of the author's knowledge, this is the first framework which simultaneously considers multiple MR tasks for deadlock-free allocation while allowing the robots to participate in multiple coalitions within their plans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
期刊最新文献
Design of hexacopter and finite element analysis for material selection Towards a novel cyber physical control system framework: a deep learning driven use case Employing a multi-sensor fusion array to detect objects for an orbital transfer vehicle to remove space debris Communication via quad/hexa-copters during disasters Nonlinear optimal control for UAVs with tilting rotors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1