{"title":"基于价格的技术模式的概率神经网络实证评价","authors":"Samit Ahlawat","doi":"10.3233/AF-160059","DOIUrl":null,"url":null,"abstract":"Technical analysis is the art of identifying patterns in historical data with the belief that certain patterns foretell future price movements. An empirical evaluation of the effectiveness of technical analysis is confounded by the subjectivity involved in identifying patterns. This work presents a robust framework for pattern identification using probabilistic neural networks (PNN). The thirty components of the Dow Jones Industrial Average and a set of ten indices are considered. Fourteen patterns are analyzed. In order to test the possibility that technical patterns are more predictable in certain market environments, the period under study (1990–2015) is partitioned into bull and bear markets and the statistical significance of profits earned by identified patterns observed in each environment is analyzed. A range of holding periods from 10 to 50 trading days is considered and a simple model of transaction costs is added. The study reveals that no pattern produces statistically and economically significant profits for a cross-section of stocks and indices analyzed, though a few patterns are more successful predictors. Bullish (bearish) patterns are more reliable predictors in bullish (bearish) market environments. These observations can be explained by the Adaptive Market Hypothesis with certain patterns becoming more accurate predictors in specific market environments.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"5 1","pages":"49-68"},"PeriodicalIF":0.3000,"publicationDate":"2017-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/AF-160059","citationCount":"0","resultStr":"{\"title\":\"Empirical evaluation of price-based technical patterns using probabilistic neural networks\",\"authors\":\"Samit Ahlawat\",\"doi\":\"10.3233/AF-160059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technical analysis is the art of identifying patterns in historical data with the belief that certain patterns foretell future price movements. An empirical evaluation of the effectiveness of technical analysis is confounded by the subjectivity involved in identifying patterns. This work presents a robust framework for pattern identification using probabilistic neural networks (PNN). The thirty components of the Dow Jones Industrial Average and a set of ten indices are considered. Fourteen patterns are analyzed. In order to test the possibility that technical patterns are more predictable in certain market environments, the period under study (1990–2015) is partitioned into bull and bear markets and the statistical significance of profits earned by identified patterns observed in each environment is analyzed. A range of holding periods from 10 to 50 trading days is considered and a simple model of transaction costs is added. The study reveals that no pattern produces statistically and economically significant profits for a cross-section of stocks and indices analyzed, though a few patterns are more successful predictors. Bullish (bearish) patterns are more reliable predictors in bullish (bearish) market environments. These observations can be explained by the Adaptive Market Hypothesis with certain patterns becoming more accurate predictors in specific market environments.\",\"PeriodicalId\":42207,\"journal\":{\"name\":\"Algorithmic Finance\",\"volume\":\"5 1\",\"pages\":\"49-68\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/AF-160059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmic Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/AF-160059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/AF-160059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Empirical evaluation of price-based technical patterns using probabilistic neural networks
Technical analysis is the art of identifying patterns in historical data with the belief that certain patterns foretell future price movements. An empirical evaluation of the effectiveness of technical analysis is confounded by the subjectivity involved in identifying patterns. This work presents a robust framework for pattern identification using probabilistic neural networks (PNN). The thirty components of the Dow Jones Industrial Average and a set of ten indices are considered. Fourteen patterns are analyzed. In order to test the possibility that technical patterns are more predictable in certain market environments, the period under study (1990–2015) is partitioned into bull and bear markets and the statistical significance of profits earned by identified patterns observed in each environment is analyzed. A range of holding periods from 10 to 50 trading days is considered and a simple model of transaction costs is added. The study reveals that no pattern produces statistically and economically significant profits for a cross-section of stocks and indices analyzed, though a few patterns are more successful predictors. Bullish (bearish) patterns are more reliable predictors in bullish (bearish) market environments. These observations can be explained by the Adaptive Market Hypothesis with certain patterns becoming more accurate predictors in specific market environments.
期刊介绍:
Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.