Geeta Vichare, Atul Kulkarni, Rahul Rawat, Gopi K. Seemala, Anoop K. Soman, Pritimay Patro
{"title":"南极两个地点静时地磁场变化的气候学","authors":"Geeta Vichare, Atul Kulkarni, Rahul Rawat, Gopi K. Seemala, Anoop K. Soman, Pritimay Patro","doi":"10.1016/j.polar.2023.100979","DOIUrl":null,"url":null,"abstract":"<div><p>During geomagnetic quiet conditions, Indian Antarctic stations are considered to be located outside the auroral oval: Maitri (CGM coordinates: 63.3°S, 54.2°E) is equatorward and Bharati (CGM coordinates: 74.8°S, 98.4°E) is poleward of the auroral oval. Simultaneous observations of magnetic field variations at these two locations for 10-years (2013–2022) provide an opportunity to study quiet-time magnetic field patterns, if any. Geomagnetic quiet days with ΣKp ≤ 3 are selected, during which the lower values of solar wind and interplanetary parameters are also confirmed. Maitri station exhibits clear southern hemispheric solar quiet (Sq) type of magnetic field variation on geomagnetic quiet days in all seasons, indicating the influence of ionospheric dynamo due to thermospheric winds. Interestingly, Bharati station also displays regular and systematic magnetic field variations in all three components. The D-component at Bharati exhibits very strong variation at early morning hours (7–8 MLT), which is ∼2–4 times stronger than that of H-component, driving strong equatorward/northward currents during all seasons. Both stations show annual type of seasonal variation with peak amplitude during summer and least during winter. The schematic illustration of global and polar Sqs proposed here explains the results obtained through 10-years’ statistical study.</p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"38 ","pages":"Article 100979"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climatology of quiet time geomagnetic field variations at two locations in Antarctica\",\"authors\":\"Geeta Vichare, Atul Kulkarni, Rahul Rawat, Gopi K. Seemala, Anoop K. Soman, Pritimay Patro\",\"doi\":\"10.1016/j.polar.2023.100979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During geomagnetic quiet conditions, Indian Antarctic stations are considered to be located outside the auroral oval: Maitri (CGM coordinates: 63.3°S, 54.2°E) is equatorward and Bharati (CGM coordinates: 74.8°S, 98.4°E) is poleward of the auroral oval. Simultaneous observations of magnetic field variations at these two locations for 10-years (2013–2022) provide an opportunity to study quiet-time magnetic field patterns, if any. Geomagnetic quiet days with ΣKp ≤ 3 are selected, during which the lower values of solar wind and interplanetary parameters are also confirmed. Maitri station exhibits clear southern hemispheric solar quiet (Sq) type of magnetic field variation on geomagnetic quiet days in all seasons, indicating the influence of ionospheric dynamo due to thermospheric winds. Interestingly, Bharati station also displays regular and systematic magnetic field variations in all three components. The D-component at Bharati exhibits very strong variation at early morning hours (7–8 MLT), which is ∼2–4 times stronger than that of H-component, driving strong equatorward/northward currents during all seasons. Both stations show annual type of seasonal variation with peak amplitude during summer and least during winter. The schematic illustration of global and polar Sqs proposed here explains the results obtained through 10-years’ statistical study.</p></div>\",\"PeriodicalId\":20316,\"journal\":{\"name\":\"Polar Science\",\"volume\":\"38 \",\"pages\":\"Article 100979\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873965223000774\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965223000774","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Climatology of quiet time geomagnetic field variations at two locations in Antarctica
During geomagnetic quiet conditions, Indian Antarctic stations are considered to be located outside the auroral oval: Maitri (CGM coordinates: 63.3°S, 54.2°E) is equatorward and Bharati (CGM coordinates: 74.8°S, 98.4°E) is poleward of the auroral oval. Simultaneous observations of magnetic field variations at these two locations for 10-years (2013–2022) provide an opportunity to study quiet-time magnetic field patterns, if any. Geomagnetic quiet days with ΣKp ≤ 3 are selected, during which the lower values of solar wind and interplanetary parameters are also confirmed. Maitri station exhibits clear southern hemispheric solar quiet (Sq) type of magnetic field variation on geomagnetic quiet days in all seasons, indicating the influence of ionospheric dynamo due to thermospheric winds. Interestingly, Bharati station also displays regular and systematic magnetic field variations in all three components. The D-component at Bharati exhibits very strong variation at early morning hours (7–8 MLT), which is ∼2–4 times stronger than that of H-component, driving strong equatorward/northward currents during all seasons. Both stations show annual type of seasonal variation with peak amplitude during summer and least during winter. The schematic illustration of global and polar Sqs proposed here explains the results obtained through 10-years’ statistical study.
期刊介绍:
Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication.
- Space and upper atmosphere physics
- Atmospheric science/climatology
- Glaciology
- Oceanography/sea ice studies
- Geology/petrology
- Solid earth geophysics/seismology
- Marine Earth science
- Geomorphology/Cenozoic-Quaternary geology
- Meteoritics
- Terrestrial biology
- Marine biology
- Animal ecology
- Environment
- Polar Engineering
- Humanities and social sciences.