N. Slimani, S. Arraouadi, H. Hajlaoui, M. A. Borgi, Nour El Houda Boughattas, V. De Feo, Mejdi Snoussi
{"title":"温室和田间生长条件对藜麦野生种质对盐胁迫响应的影响","authors":"N. Slimani, S. Arraouadi, H. Hajlaoui, M. A. Borgi, Nour El Houda Boughattas, V. De Feo, Mejdi Snoussi","doi":"10.3390/agronomy13092303","DOIUrl":null,"url":null,"abstract":"Quinoa’s exceptional capacity to tolerate high salt levels presents a promising solution to the agricultural challenges posed by salt stress. This study aimed to explore salt stress effects on three quinoa accessions (18 GR, R-132, and DE-1) and to compare the influence of greenhouse and field growing conditions on their salinity tolerance. The plants were irrigated by 50, 100, 150, and 200 mM NaCl concentrations. The results showed that quinoa plants’ response to morphological, physiological, biochemical, and enzymatic parameters was influenced by NaCl concentration, accession, growing conditions, and their interactions. As salinity irrigation increased, aerial part length and leaf area decreased significantly (p < 0.05) for all studied accessions, correlating with plant photosynthetic parameters. Greenhouse conditions promote faster and more vigorous growth with a larger leaf area compared to field cultivation. Furthermore, at 200 mM concentration, the DE-1 accession displayed greater photosynthetic activity, recording values of 195.66 ± 3.56 and 120 ± 1.13 µmol·m−2·s−1 for greenhouse and open field conditions, respectively. NaCl stimulated MDA and H2O2 in both conditions for all accessions, and the DE-1 accession displayed the lowest levels. Proteins, sugars, proline, peroxidase, ascorbate peroxidase, and catalase were stimulated by salt stress, except in the R-132 accession. Field cultivation resulted in a more severe salinity response. Greenhouse conditions may enhance quinoa’s salt tolerance due to the less demanding growth conditions. DE-1 exhibited the highest salt tolerance, while R-132 showed the lowest. This study sets the stage for further research into the genetic basis of salt tolerance in various quinoa accessions, optimizing growth in salty regions through farming practices, and confirming the obtained results in real-world conditions for sustainable agriculture.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Impact of Greenhouse and Field Growth Conditions on Chenopodium quinoa Willd Accessions’ Response to Salt Stress: A Comparative Approach\",\"authors\":\"N. Slimani, S. Arraouadi, H. Hajlaoui, M. A. Borgi, Nour El Houda Boughattas, V. De Feo, Mejdi Snoussi\",\"doi\":\"10.3390/agronomy13092303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quinoa’s exceptional capacity to tolerate high salt levels presents a promising solution to the agricultural challenges posed by salt stress. This study aimed to explore salt stress effects on three quinoa accessions (18 GR, R-132, and DE-1) and to compare the influence of greenhouse and field growing conditions on their salinity tolerance. The plants were irrigated by 50, 100, 150, and 200 mM NaCl concentrations. The results showed that quinoa plants’ response to morphological, physiological, biochemical, and enzymatic parameters was influenced by NaCl concentration, accession, growing conditions, and their interactions. As salinity irrigation increased, aerial part length and leaf area decreased significantly (p < 0.05) for all studied accessions, correlating with plant photosynthetic parameters. Greenhouse conditions promote faster and more vigorous growth with a larger leaf area compared to field cultivation. Furthermore, at 200 mM concentration, the DE-1 accession displayed greater photosynthetic activity, recording values of 195.66 ± 3.56 and 120 ± 1.13 µmol·m−2·s−1 for greenhouse and open field conditions, respectively. NaCl stimulated MDA and H2O2 in both conditions for all accessions, and the DE-1 accession displayed the lowest levels. Proteins, sugars, proline, peroxidase, ascorbate peroxidase, and catalase were stimulated by salt stress, except in the R-132 accession. Field cultivation resulted in a more severe salinity response. Greenhouse conditions may enhance quinoa’s salt tolerance due to the less demanding growth conditions. DE-1 exhibited the highest salt tolerance, while R-132 showed the lowest. This study sets the stage for further research into the genetic basis of salt tolerance in various quinoa accessions, optimizing growth in salty regions through farming practices, and confirming the obtained results in real-world conditions for sustainable agriculture.\",\"PeriodicalId\":56066,\"journal\":{\"name\":\"Agronomy-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy13092303\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092303","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
The Impact of Greenhouse and Field Growth Conditions on Chenopodium quinoa Willd Accessions’ Response to Salt Stress: A Comparative Approach
Quinoa’s exceptional capacity to tolerate high salt levels presents a promising solution to the agricultural challenges posed by salt stress. This study aimed to explore salt stress effects on three quinoa accessions (18 GR, R-132, and DE-1) and to compare the influence of greenhouse and field growing conditions on their salinity tolerance. The plants were irrigated by 50, 100, 150, and 200 mM NaCl concentrations. The results showed that quinoa plants’ response to morphological, physiological, biochemical, and enzymatic parameters was influenced by NaCl concentration, accession, growing conditions, and their interactions. As salinity irrigation increased, aerial part length and leaf area decreased significantly (p < 0.05) for all studied accessions, correlating with plant photosynthetic parameters. Greenhouse conditions promote faster and more vigorous growth with a larger leaf area compared to field cultivation. Furthermore, at 200 mM concentration, the DE-1 accession displayed greater photosynthetic activity, recording values of 195.66 ± 3.56 and 120 ± 1.13 µmol·m−2·s−1 for greenhouse and open field conditions, respectively. NaCl stimulated MDA and H2O2 in both conditions for all accessions, and the DE-1 accession displayed the lowest levels. Proteins, sugars, proline, peroxidase, ascorbate peroxidase, and catalase were stimulated by salt stress, except in the R-132 accession. Field cultivation resulted in a more severe salinity response. Greenhouse conditions may enhance quinoa’s salt tolerance due to the less demanding growth conditions. DE-1 exhibited the highest salt tolerance, while R-132 showed the lowest. This study sets the stage for further research into the genetic basis of salt tolerance in various quinoa accessions, optimizing growth in salty regions through farming practices, and confirming the obtained results in real-world conditions for sustainable agriculture.
Agronomy-BaselAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍:
Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.