电动汽车充电站智能电池充电器的实验实现

A. Hassoune, M. Khafallah, A. Mesbahi, Ayoub Nouaiti, T. Bouragba
{"title":"电动汽车充电站智能电池充电器的实验实现","authors":"A. Hassoune, M. Khafallah, A. Mesbahi, Ayoub Nouaiti, T. Bouragba","doi":"10.11591/IJPEDS.V11.I4.PP1689-1699","DOIUrl":null,"url":null,"abstract":"In this paper, an implementation of a DC/DC buck converter for electric vehicles charging station and a DSP based closed-loop digital controller design are presented and analyzed. The aim of this work is to achieve an improved control strategy for a Li-ion battery charger implemented on a Real-time test platform. The test platform consists of a popular power pole board (MPCA75136) dedicated to studying the DC/DC converters, and a DSP development kit (TMS320F28379D) that is used to drive the DC/DC buck converter. The control strategy is based on a digital control system containing the closed-loop current controller followed by a pulse width modulation block, and on a real time state of charge estimation technique for a Li-ion battery. However, the overall control design is modeled on Simulink via block diagrams, and automatically generated code that is targeted into the DSP processor. Simulation and experimental results have shown the effectiveness of the proposed test bench and its external digital control strategy via a charging scenario for electric vehicles batteries.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"11 1","pages":"1689-1699"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental implementation of a smart battery charger for electric vehicles charging station\",\"authors\":\"A. Hassoune, M. Khafallah, A. Mesbahi, Ayoub Nouaiti, T. Bouragba\",\"doi\":\"10.11591/IJPEDS.V11.I4.PP1689-1699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an implementation of a DC/DC buck converter for electric vehicles charging station and a DSP based closed-loop digital controller design are presented and analyzed. The aim of this work is to achieve an improved control strategy for a Li-ion battery charger implemented on a Real-time test platform. The test platform consists of a popular power pole board (MPCA75136) dedicated to studying the DC/DC converters, and a DSP development kit (TMS320F28379D) that is used to drive the DC/DC buck converter. The control strategy is based on a digital control system containing the closed-loop current controller followed by a pulse width modulation block, and on a real time state of charge estimation technique for a Li-ion battery. However, the overall control design is modeled on Simulink via block diagrams, and automatically generated code that is targeted into the DSP processor. Simulation and experimental results have shown the effectiveness of the proposed test bench and its external digital control strategy via a charging scenario for electric vehicles batteries.\",\"PeriodicalId\":38280,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems\",\"volume\":\"11 1\",\"pages\":\"1689-1699\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJPEDS.V11.I4.PP1689-1699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V11.I4.PP1689-1699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 4

摘要

本文提出并分析了一种用于电动汽车充电站的DC/DC降压转换器的实现方法和基于DSP的闭环数字控制器的设计。本工作的目的是在实时测试平台上实现一种改进的锂离子电池充电器控制策略。该测试平台由一个专门研究DC/DC转换器的流行电源极板(MPCA75136)和一个用于驱动DC/DC降压转换器的DSP开发套件(TMS320F28379D)组成。该控制策略基于数字控制系统,该系统包含闭环电流控制器和脉宽调制块,并基于锂离子电池的实时充电状态估计技术。然而,整体控制设计是通过框图在Simulink上建模的,并自动生成代码,目标是进入DSP处理器。仿真和实验结果表明,通过电动汽车电池充电场景,所提出的测试台及其外部数字控制策略是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental implementation of a smart battery charger for electric vehicles charging station
In this paper, an implementation of a DC/DC buck converter for electric vehicles charging station and a DSP based closed-loop digital controller design are presented and analyzed. The aim of this work is to achieve an improved control strategy for a Li-ion battery charger implemented on a Real-time test platform. The test platform consists of a popular power pole board (MPCA75136) dedicated to studying the DC/DC converters, and a DSP development kit (TMS320F28379D) that is used to drive the DC/DC buck converter. The control strategy is based on a digital control system containing the closed-loop current controller followed by a pulse width modulation block, and on a real time state of charge estimation technique for a Li-ion battery. However, the overall control design is modeled on Simulink via block diagrams, and automatically generated code that is targeted into the DSP processor. Simulation and experimental results have shown the effectiveness of the proposed test bench and its external digital control strategy via a charging scenario for electric vehicles batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Power Electronics and Drive Systems
International Journal of Power Electronics and Drive Systems Energy-Energy Engineering and Power Technology
CiteScore
3.50
自引率
0.00%
发文量
0
期刊介绍: International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
期刊最新文献
Mitigation of harmonic distortions in third rail electrical systems A new direct current circuit breaker with current regeneration capability Modeling and Control of a Hybrid DC/DC/AC Converter to Transfer Power under Different Power Management Strategies Energy, economic and environmental analysis of fuzzy logic controllers used in smart buildings Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1