M. Stefanelli, Simona Scardala, P. Cabras, A. Orrù, S. Vichi, E. Testai, E. Funari, M. Manganelli
{"title":"蓝藻动力学和毒素浓度在湖阿尔托弗卢门多萨,撒丁岛,意大利","authors":"M. Stefanelli, Simona Scardala, P. Cabras, A. Orrù, S. Vichi, E. Testai, E. Funari, M. Manganelli","doi":"10.4081/AIOL.2017.6352","DOIUrl":null,"url":null,"abstract":"Seasonal blooms of cyanobacteria (CB) are a typical feature of Lake Alto Flumendosa (Sardinia, Italy). The waters of this lake are used for drinking water supply, for agricultural and industrial uses, and fish farming activities. Since cyanotoxins are not monitored in edible organisms, diet could be a relevant route of human exposure. CB also represent a threat for the health of wild and domestic animals that use lake water for beverage. Therefore, to characterize the CB community and assess the risk for human and animal population, CB dynamic, mcy B + fraction, and microcystins (MCs) concentration have been followed monthly for 18 months, in three stations. Results confirmed the presence of several toxigenic species. Planktothrix rubescens dominated between August 2011 and April 2012 (3.5×10 6 cells L -1 ), alternating with Woronichinia naegeliana (8×10 6 cells L -1 ) and Microcystis botrys (9×10 5 cells L -1 ). Dolichospermum planctonicum was always present at low densities (10 4 cells L -1 ). MCs were detected, at values well below the 1 µg L -1 threshold of WHO for drinking water. The molecular analysis of mcy B gene for P. rubescens indicated the presence of a persistent toxic population (average 0.45 mcy B/16S rDNA). Highly significant linear regressions were found between P. rubescens and the sum of the demethylated MC variants, and between M. botrys and the sum of MC-LR and MC-LA, also when co-occurring, suggesting that these two species were responsible for different MC patterns production. The regression lines indicated a quite stable MC cell quota. However, in some spotted samples very different values were obtained for both MC concentrations and cell quota (from 10-fold lower to 30-40-fold higher than the ‘average’) showing an unexpected significant variability in the rate of toxin production. The relatively low cell densities during the monitoring period is consistent with the low-to absent MC contamination level found in trout muscle; however, the analytical method was affected by low recovery, probably due to MC-protein binding. Our results show that, during the study period, no risk of exposure for the human and animal population occurred. However, the persistence of a complex CB community characterised by a significant toxic fraction suggests the need for periodic monitoring activity. Particularly, the hidden deep summer P. rubescens blooms, located where water is taken for drinking water supply, and M. botrys , able to produce the most toxic MC variants with high cell quota, should be kept under control. The documentation and interpretation of sudden changes in toxins concentrations deserve special attention. This is particularly relevant in proximity of fish farming plants and water catchment sites.","PeriodicalId":37306,"journal":{"name":"Advances in Oceanography and Limnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4081/AIOL.2017.6352","citationCount":"5","resultStr":"{\"title\":\"Cyanobacterial dynamics and toxins concentrations in Lake Alto Flumendosa, Sardinia, Italy\",\"authors\":\"M. Stefanelli, Simona Scardala, P. Cabras, A. Orrù, S. Vichi, E. Testai, E. Funari, M. Manganelli\",\"doi\":\"10.4081/AIOL.2017.6352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seasonal blooms of cyanobacteria (CB) are a typical feature of Lake Alto Flumendosa (Sardinia, Italy). The waters of this lake are used for drinking water supply, for agricultural and industrial uses, and fish farming activities. Since cyanotoxins are not monitored in edible organisms, diet could be a relevant route of human exposure. CB also represent a threat for the health of wild and domestic animals that use lake water for beverage. Therefore, to characterize the CB community and assess the risk for human and animal population, CB dynamic, mcy B + fraction, and microcystins (MCs) concentration have been followed monthly for 18 months, in three stations. Results confirmed the presence of several toxigenic species. Planktothrix rubescens dominated between August 2011 and April 2012 (3.5×10 6 cells L -1 ), alternating with Woronichinia naegeliana (8×10 6 cells L -1 ) and Microcystis botrys (9×10 5 cells L -1 ). Dolichospermum planctonicum was always present at low densities (10 4 cells L -1 ). MCs were detected, at values well below the 1 µg L -1 threshold of WHO for drinking water. The molecular analysis of mcy B gene for P. rubescens indicated the presence of a persistent toxic population (average 0.45 mcy B/16S rDNA). Highly significant linear regressions were found between P. rubescens and the sum of the demethylated MC variants, and between M. botrys and the sum of MC-LR and MC-LA, also when co-occurring, suggesting that these two species were responsible for different MC patterns production. The regression lines indicated a quite stable MC cell quota. However, in some spotted samples very different values were obtained for both MC concentrations and cell quota (from 10-fold lower to 30-40-fold higher than the ‘average’) showing an unexpected significant variability in the rate of toxin production. The relatively low cell densities during the monitoring period is consistent with the low-to absent MC contamination level found in trout muscle; however, the analytical method was affected by low recovery, probably due to MC-protein binding. Our results show that, during the study period, no risk of exposure for the human and animal population occurred. However, the persistence of a complex CB community characterised by a significant toxic fraction suggests the need for periodic monitoring activity. Particularly, the hidden deep summer P. rubescens blooms, located where water is taken for drinking water supply, and M. botrys , able to produce the most toxic MC variants with high cell quota, should be kept under control. The documentation and interpretation of sudden changes in toxins concentrations deserve special attention. This is particularly relevant in proximity of fish farming plants and water catchment sites.\",\"PeriodicalId\":37306,\"journal\":{\"name\":\"Advances in Oceanography and Limnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4081/AIOL.2017.6352\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Oceanography and Limnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/AIOL.2017.6352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Oceanography and Limnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/AIOL.2017.6352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Cyanobacterial dynamics and toxins concentrations in Lake Alto Flumendosa, Sardinia, Italy
Seasonal blooms of cyanobacteria (CB) are a typical feature of Lake Alto Flumendosa (Sardinia, Italy). The waters of this lake are used for drinking water supply, for agricultural and industrial uses, and fish farming activities. Since cyanotoxins are not monitored in edible organisms, diet could be a relevant route of human exposure. CB also represent a threat for the health of wild and domestic animals that use lake water for beverage. Therefore, to characterize the CB community and assess the risk for human and animal population, CB dynamic, mcy B + fraction, and microcystins (MCs) concentration have been followed monthly for 18 months, in three stations. Results confirmed the presence of several toxigenic species. Planktothrix rubescens dominated between August 2011 and April 2012 (3.5×10 6 cells L -1 ), alternating with Woronichinia naegeliana (8×10 6 cells L -1 ) and Microcystis botrys (9×10 5 cells L -1 ). Dolichospermum planctonicum was always present at low densities (10 4 cells L -1 ). MCs were detected, at values well below the 1 µg L -1 threshold of WHO for drinking water. The molecular analysis of mcy B gene for P. rubescens indicated the presence of a persistent toxic population (average 0.45 mcy B/16S rDNA). Highly significant linear regressions were found between P. rubescens and the sum of the demethylated MC variants, and between M. botrys and the sum of MC-LR and MC-LA, also when co-occurring, suggesting that these two species were responsible for different MC patterns production. The regression lines indicated a quite stable MC cell quota. However, in some spotted samples very different values were obtained for both MC concentrations and cell quota (from 10-fold lower to 30-40-fold higher than the ‘average’) showing an unexpected significant variability in the rate of toxin production. The relatively low cell densities during the monitoring period is consistent with the low-to absent MC contamination level found in trout muscle; however, the analytical method was affected by low recovery, probably due to MC-protein binding. Our results show that, during the study period, no risk of exposure for the human and animal population occurred. However, the persistence of a complex CB community characterised by a significant toxic fraction suggests the need for periodic monitoring activity. Particularly, the hidden deep summer P. rubescens blooms, located where water is taken for drinking water supply, and M. botrys , able to produce the most toxic MC variants with high cell quota, should be kept under control. The documentation and interpretation of sudden changes in toxins concentrations deserve special attention. This is particularly relevant in proximity of fish farming plants and water catchment sites.
期刊介绍:
Advances in Oceanography and Limnology was born in 2010 from the 35 years old Proceedings of the national congress of the Italian Association of Oceanology and Limnology. The AIOL Journal was funded as an interdisciplinary journal embracing both fundamental and applied Oceanographic and Limnological research, with focus on both single and multiple disciplines. Currently, two regular issues of the journal are published each year. In addition, Special Issues that focus on topics that are timely and of interest to a significant number of Limnologists and Oceanographers are also published. The journal, which is intended as an official publication of the AIOL, is also published in association with the EFFS (European Federation for Freshwater Sciences), which aims and objectives are directed towards the promotion of freshwater sciences throughout Europe. Starting from the 2015 issue, the AIOL Journal is published as an Open Access, peer-reviewed journal. Space is given to regular articles, review, short notes and opinion paper