{"title":"将实时天气条件纳入高速公路事故放行时间分析:一个具有时变协变量的基于风险的分组随机参数持续时间模型","authors":"Qiang Zeng , Fangzhou Wang , Tiantian Chen , N.N. Sze","doi":"10.1016/j.amar.2023.100267","DOIUrl":null,"url":null,"abstract":"<div><p>To minimize non-recurrent congestion, a better understanding of the factors that affect accident clearance time is crucial, in order to optimize incident management strategies. A number of methods have been developed to predict incident clearance duration, but few of those have considered the time-varying nature of certain observed factors. In addressing this gap in the literature, this study developed a grouped random parameters hazard-based duration model with time-varying covariates, while accounting for unobserved heterogeneity. Data on accidents, traffic, road inventory, and real-time weather condition were compiled for the Kaiyang freeway in 2014. Comparison of candidate models shows that the proposed model with Weibull distribution exhibits the best fit performance. The results suggest that the effects of rear-end accident, involvements of trucks or other vehicles, evening hours, and shoulder blockage on the hazard function are heterogeneous across observations. Other variables such as angle accident, injury severity, traffic volume and composition, morning or pre-dawn hours, and blockage of overtaking lane were also found to have significant but homogenous effects on accident clearance time. More importantly, the results also reveal the significant effects of the time-varying covariates (wind speed, temperature, and humidity). Accordingly, the viability and superiority of the proposed model in analyzing accident clearance time are confirmed. Overall, the results of this study are expected not only to improve traffic incident management by allowing government agencies to better understand factors affecting accident clearance times, but also to facilitate incident clearance through the recognition of time-varying pattern.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"38 ","pages":"Article 100267"},"PeriodicalIF":12.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Incorporating real-time weather conditions into analyzing clearance time of freeway accidents: A grouped random parameters hazard-based duration model with time-varying covariates\",\"authors\":\"Qiang Zeng , Fangzhou Wang , Tiantian Chen , N.N. Sze\",\"doi\":\"10.1016/j.amar.2023.100267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To minimize non-recurrent congestion, a better understanding of the factors that affect accident clearance time is crucial, in order to optimize incident management strategies. A number of methods have been developed to predict incident clearance duration, but few of those have considered the time-varying nature of certain observed factors. In addressing this gap in the literature, this study developed a grouped random parameters hazard-based duration model with time-varying covariates, while accounting for unobserved heterogeneity. Data on accidents, traffic, road inventory, and real-time weather condition were compiled for the Kaiyang freeway in 2014. Comparison of candidate models shows that the proposed model with Weibull distribution exhibits the best fit performance. The results suggest that the effects of rear-end accident, involvements of trucks or other vehicles, evening hours, and shoulder blockage on the hazard function are heterogeneous across observations. Other variables such as angle accident, injury severity, traffic volume and composition, morning or pre-dawn hours, and blockage of overtaking lane were also found to have significant but homogenous effects on accident clearance time. More importantly, the results also reveal the significant effects of the time-varying covariates (wind speed, temperature, and humidity). Accordingly, the viability and superiority of the proposed model in analyzing accident clearance time are confirmed. Overall, the results of this study are expected not only to improve traffic incident management by allowing government agencies to better understand factors affecting accident clearance times, but also to facilitate incident clearance through the recognition of time-varying pattern.</p></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"38 \",\"pages\":\"Article 100267\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213665723000027\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665723000027","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Incorporating real-time weather conditions into analyzing clearance time of freeway accidents: A grouped random parameters hazard-based duration model with time-varying covariates
To minimize non-recurrent congestion, a better understanding of the factors that affect accident clearance time is crucial, in order to optimize incident management strategies. A number of methods have been developed to predict incident clearance duration, but few of those have considered the time-varying nature of certain observed factors. In addressing this gap in the literature, this study developed a grouped random parameters hazard-based duration model with time-varying covariates, while accounting for unobserved heterogeneity. Data on accidents, traffic, road inventory, and real-time weather condition were compiled for the Kaiyang freeway in 2014. Comparison of candidate models shows that the proposed model with Weibull distribution exhibits the best fit performance. The results suggest that the effects of rear-end accident, involvements of trucks or other vehicles, evening hours, and shoulder blockage on the hazard function are heterogeneous across observations. Other variables such as angle accident, injury severity, traffic volume and composition, morning or pre-dawn hours, and blockage of overtaking lane were also found to have significant but homogenous effects on accident clearance time. More importantly, the results also reveal the significant effects of the time-varying covariates (wind speed, temperature, and humidity). Accordingly, the viability and superiority of the proposed model in analyzing accident clearance time are confirmed. Overall, the results of this study are expected not only to improve traffic incident management by allowing government agencies to better understand factors affecting accident clearance times, but also to facilitate incident clearance through the recognition of time-varying pattern.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.