Understanding the effects of underreporting on injury severity estimation of single-vehicle motorcycle crashes: A hybrid approach incorporating majority class oversampling and random parameters with heterogeneity-in-means

IF 12.5 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Analytic Methods in Accident Research Pub Date : 2025-01-23 DOI:10.1016/j.amar.2025.100372
Nawaf Alnawmasi , Apostolos Ziakopoulos , Athanasios Theofilatos , Yasir Ali
{"title":"Understanding the effects of underreporting on injury severity estimation of single-vehicle motorcycle crashes: A hybrid approach incorporating majority class oversampling and random parameters with heterogeneity-in-means","authors":"Nawaf Alnawmasi ,&nbsp;Apostolos Ziakopoulos ,&nbsp;Athanasios Theofilatos ,&nbsp;Yasir Ali","doi":"10.1016/j.amar.2025.100372","DOIUrl":null,"url":null,"abstract":"<div><div>The underreporting of crash data is a well-documented issue in road safety literature, but few studies have focused on addressing this problem in the context of analyzing crash injury severities. This paper aims to provide an empirical assessment of the impact of underreporting issue using a hybrid approach in estimating injury severity for single-vehicle motorcycle crashes. Unlike traditional machine learning methods that oversample the minority class (the category with the fewer observations such as fatal and severe injuries), the present study oversamples the majority class (i.e. minor injuries), which are often underreported in crash datasets, thus providing a fresh perspective on this issue. Afterwards, random parameter models with heterogeneity in means and variances were applied. The results of this study, as supported by the likelihood ratio tests, indicate that the key variables influencing motorcyclists’ injury severities remain consistent across both original and oversampled data models. Specifically, crashes occurring during slowing down or stopping are associated with lower injury severity, whereas negotiating a right turn increases the probability of severe injuries. Interestingly, crashes that occur on dry pavements are associated with higher injury severity when compared to wet pavements, likely due to rider behavior adjustments in adverse weather conditions to compensate for the risk. Overall, the oversampled models have a significantly lower marginal effects values compared to the original model’s marginal effects. This study provides a foundation for further examination of underreporting issue in crash injury severity modelling and also highlights the need to capture the dynamics of crash injuries suggesting that alternative approaches could improve the understanding and hence road safety management. Future studies are encouraged to replicate this methodology to validate the findings as well as utilize other advanced machine learning algorithms, like tree-based models to assess underreporting mitigation.</div></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"45 ","pages":"Article 100372"},"PeriodicalIF":12.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221366572500003X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

The underreporting of crash data is a well-documented issue in road safety literature, but few studies have focused on addressing this problem in the context of analyzing crash injury severities. This paper aims to provide an empirical assessment of the impact of underreporting issue using a hybrid approach in estimating injury severity for single-vehicle motorcycle crashes. Unlike traditional machine learning methods that oversample the minority class (the category with the fewer observations such as fatal and severe injuries), the present study oversamples the majority class (i.e. minor injuries), which are often underreported in crash datasets, thus providing a fresh perspective on this issue. Afterwards, random parameter models with heterogeneity in means and variances were applied. The results of this study, as supported by the likelihood ratio tests, indicate that the key variables influencing motorcyclists’ injury severities remain consistent across both original and oversampled data models. Specifically, crashes occurring during slowing down or stopping are associated with lower injury severity, whereas negotiating a right turn increases the probability of severe injuries. Interestingly, crashes that occur on dry pavements are associated with higher injury severity when compared to wet pavements, likely due to rider behavior adjustments in adverse weather conditions to compensate for the risk. Overall, the oversampled models have a significantly lower marginal effects values compared to the original model’s marginal effects. This study provides a foundation for further examination of underreporting issue in crash injury severity modelling and also highlights the need to capture the dynamics of crash injuries suggesting that alternative approaches could improve the understanding and hence road safety management. Future studies are encouraged to replicate this methodology to validate the findings as well as utilize other advanced machine learning algorithms, like tree-based models to assess underreporting mitigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.10
自引率
34.10%
发文量
35
审稿时长
24 days
期刊介绍: Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.
期刊最新文献
Understanding the effects of underreporting on injury severity estimation of single-vehicle motorcycle crashes: A hybrid approach incorporating majority class oversampling and random parameters with heterogeneity-in-means How do drivers manage speed at tunnel entrances? Insights from uncorrelated grouped random parameters duration models for model invalidation and performance recovery times Time-dependent effect of advanced driver assistance systems on driver behavior based on connected vehicle data A unified probabilistic approach to traffic conflict detection Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1