{"title":"逐次逼近寄存器时间-数字转换器低温神经网络中基于时间的内存计算","authors":"Dong Suk Kang;Shimeng Yu","doi":"10.1109/JXCDC.2022.3225243","DOIUrl":null,"url":null,"abstract":"This article explores a compute-in-memory (CIM) paradigm’s new application for cryogenic neural network. Using the 28-nm cryogenic transistor model calibrated at 4 K, the time-based CIM macro comprised of the following: 1) area-efficient unit delay cell design for cryogenic operation and 2) area and power efficient, and a high-resolution achievable successive approximation register (SAR) time-to-digital converter (TDC) is proposed. The benchmark simulation first shows that the proposed macro has better latency than the current-based CIM counterpart. Next, the simulation further shows that it has better scalability for a larger size decoder design and process technology optimization.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"8 2","pages":"128-133"},"PeriodicalIF":2.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9969523/09966349.pdf","citationCount":"1","resultStr":"{\"title\":\"Time-Based Compute-in-Memory for Cryogenic Neural Network With Successive Approximation Register Time-to-Digital Converter\",\"authors\":\"Dong Suk Kang;Shimeng Yu\",\"doi\":\"10.1109/JXCDC.2022.3225243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores a compute-in-memory (CIM) paradigm’s new application for cryogenic neural network. Using the 28-nm cryogenic transistor model calibrated at 4 K, the time-based CIM macro comprised of the following: 1) area-efficient unit delay cell design for cryogenic operation and 2) area and power efficient, and a high-resolution achievable successive approximation register (SAR) time-to-digital converter (TDC) is proposed. The benchmark simulation first shows that the proposed macro has better latency than the current-based CIM counterpart. Next, the simulation further shows that it has better scalability for a larger size decoder design and process technology optimization.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":\"8 2\",\"pages\":\"128-133\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/6570653/9969523/09966349.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9966349/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9966349/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Time-Based Compute-in-Memory for Cryogenic Neural Network With Successive Approximation Register Time-to-Digital Converter
This article explores a compute-in-memory (CIM) paradigm’s new application for cryogenic neural network. Using the 28-nm cryogenic transistor model calibrated at 4 K, the time-based CIM macro comprised of the following: 1) area-efficient unit delay cell design for cryogenic operation and 2) area and power efficient, and a high-resolution achievable successive approximation register (SAR) time-to-digital converter (TDC) is proposed. The benchmark simulation first shows that the proposed macro has better latency than the current-based CIM counterpart. Next, the simulation further shows that it has better scalability for a larger size decoder design and process technology optimization.