象鼻虫表皮碳氢化合物:有物种差异吗?

IF 1.6 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemoecology Pub Date : 2021-02-07 DOI:10.1007/s00049-021-00337-5
Natalia M. Souza, Michelle L. Schröder, R. Andrew Hayes, Jan E. Bello, Helen F. Nahrung
{"title":"象鼻虫表皮碳氢化合物:有物种差异吗?","authors":"Natalia M. Souza,&nbsp;Michelle L. Schröder,&nbsp;R. Andrew Hayes,&nbsp;Jan E. Bello,&nbsp;Helen F. Nahrung","doi":"10.1007/s00049-021-00337-5","DOIUrl":null,"url":null,"abstract":"<p><i>Gonipterus</i> weevils have been a taxonomic challenge for many years, with implications on our understanding of invasive species, host plant relationships and natural enemies. We assessed cuticular hydrocarbon (CHC) analysis as a tool for discrimination of some of the many species of <i>Gonipterus</i> occurring in Australia. Weevils were collected across several localities and kept under identical conditions prior to a whole-body wash for extraction of CHCs in hexane. Weevil identifications were confirmed using morphology and molecular tools. CHC extracts were analyzed by gas chromatography–mass spectrometry (GC–MS) and the relative peak areas in profiles were compared; compounds were identified according to MS fragmentation and retention indices. CHC profiles of the seven species of <i>Gonipterus</i> analyzed differed from each other, and from another weevil genus (<i>Oxyops</i>), used as an outgroup. The compounds that contributed most to species differences were alkanes, alkenes and methyl branched alkanes. Within some species, locality of collection affected CHC profiles. Our study presents CHC analysis as a promising tool for distinction of <i>Gonipterus</i> species.</p>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"31 3","pages":"159 - 167"},"PeriodicalIF":1.6000,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00049-021-00337-5","citationCount":"5","resultStr":"{\"title\":\"Cuticular hydrocarbons of Gonipterus weevils: are there species differences?\",\"authors\":\"Natalia M. Souza,&nbsp;Michelle L. Schröder,&nbsp;R. Andrew Hayes,&nbsp;Jan E. Bello,&nbsp;Helen F. Nahrung\",\"doi\":\"10.1007/s00049-021-00337-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Gonipterus</i> weevils have been a taxonomic challenge for many years, with implications on our understanding of invasive species, host plant relationships and natural enemies. We assessed cuticular hydrocarbon (CHC) analysis as a tool for discrimination of some of the many species of <i>Gonipterus</i> occurring in Australia. Weevils were collected across several localities and kept under identical conditions prior to a whole-body wash for extraction of CHCs in hexane. Weevil identifications were confirmed using morphology and molecular tools. CHC extracts were analyzed by gas chromatography–mass spectrometry (GC–MS) and the relative peak areas in profiles were compared; compounds were identified according to MS fragmentation and retention indices. CHC profiles of the seven species of <i>Gonipterus</i> analyzed differed from each other, and from another weevil genus (<i>Oxyops</i>), used as an outgroup. The compounds that contributed most to species differences were alkanes, alkenes and methyl branched alkanes. Within some species, locality of collection affected CHC profiles. Our study presents CHC analysis as a promising tool for distinction of <i>Gonipterus</i> species.</p>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"31 3\",\"pages\":\"159 - 167\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00049-021-00337-5\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-021-00337-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-021-00337-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

Gonipterus象鼻虫多年来一直是一个分类上的挑战,它对我们对入侵物种、寄主植物关系和天敌的理解产生了影响。我们评估了表皮碳氢化合物(CHC)分析作为一种工具来区分一些在澳大利亚出现的许多种Gonipterus。在几个地方收集象鼻虫,并在相同的条件下保存,然后全身清洗以提取己烷中的CHCs。象鼻虫鉴定采用形态学和分子工具。采用气相色谱-质谱法(GC-MS)对CHC提取物进行分析,并比较各剖面的相对峰面积;根据质谱破碎度和保留度指数对化合物进行鉴定。所分析的7个象鼻虫种的CHC谱彼此之间存在差异,并与另一个象鼻虫属(Oxyops)作为外类群存在差异。对物种差异贡献最大的化合物是烷烃、烯烃和甲基支链烷烃。在一些物种中,采集地点影响CHC分布。本研究表明,CHC分析是一种很有前途的Gonipterus物种区分工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cuticular hydrocarbons of Gonipterus weevils: are there species differences?

Gonipterus weevils have been a taxonomic challenge for many years, with implications on our understanding of invasive species, host plant relationships and natural enemies. We assessed cuticular hydrocarbon (CHC) analysis as a tool for discrimination of some of the many species of Gonipterus occurring in Australia. Weevils were collected across several localities and kept under identical conditions prior to a whole-body wash for extraction of CHCs in hexane. Weevil identifications were confirmed using morphology and molecular tools. CHC extracts were analyzed by gas chromatography–mass spectrometry (GC–MS) and the relative peak areas in profiles were compared; compounds were identified according to MS fragmentation and retention indices. CHC profiles of the seven species of Gonipterus analyzed differed from each other, and from another weevil genus (Oxyops), used as an outgroup. The compounds that contributed most to species differences were alkanes, alkenes and methyl branched alkanes. Within some species, locality of collection affected CHC profiles. Our study presents CHC analysis as a promising tool for distinction of Gonipterus species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemoecology
Chemoecology 环境科学-生化与分子生物学
CiteScore
4.20
自引率
0.00%
发文量
11
审稿时长
>36 weeks
期刊介绍: It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.
期刊最新文献
Pyrrolizidine alkaloids in tiger moths: trends and knowledge gaps Cuticular hydrocarbons as host recognition cues in specialist and generalist endoparasitoids How to chew gum: the post-ingestion fate of foliar secondary compounds consumed by a eucalypt herbivore Correction: The variability of iridomyrmecin, the venom of the Argentine ant, in its native and invasive ranges Exploring the venom of Ectatomma brunneum Smith (Hymenoptera: Formicidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1