{"title":"多铁性磁电钙钛矿中八面体畸变引发的偶极-自旋相互作用","authors":"Xiangqian Lu, Renjie Hu, Yabin Zhu, Kepeng Song, Wei Qin","doi":"10.1038/s41427-023-00485-w","DOIUrl":null,"url":null,"abstract":"The design of perovskite structures with multiferroic magnetoelectric coupling effects opens up new opportunities in fields such as the creation of next-generation spin-dependent multistate information storage technologies. In this work, we prepared a transition metal-implanted perovskite with multiferroic magnetoelectric coupling, in which both magnetoelectric coupling and a blueshift of photoluminescence were observed. The introduction of transition metal-generated polarized spin interacts with the electronic orbit through spin–orbital coupling to lead to a pronounced octahedron distortion, where the temperature dependence of the dielectric constant undergoes a ferroelectric polarization transition. An external magnetic field could enhance the strength of spin polarization to further affect the magnitude of electric polarization. Moreover, applying an electric field tunes the distortion of the octahedron dependence of electric polarization to feed back to the change in spin polarization. Overall, the spin polarization-induced electric polarization in perovskites provides a unique approach to realizing the room-temperature magnetoelectric coupling of multiferroic materials. The coexistence of ferroelectricity and ferromagnetism has been a traditional challenge for a long time. In this work, we propose a method of transition metal implantation into hybrid perovskites, which realizes the mutual regulation of magnetism and electricity, and obtains an obvious multiferroic magnetic-electric coupling effect. This study provides a new idea for realizing room-temperature magnetoelectric coupling of multiferroic materials employing ion implantation and paves the way for the realization of a new generation of spin-dependent electronic devices.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-8"},"PeriodicalIF":8.6000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00485-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Octahedron distortion-triggered dipole–spin interaction in multiferroic magnetoelectric perovskites\",\"authors\":\"Xiangqian Lu, Renjie Hu, Yabin Zhu, Kepeng Song, Wei Qin\",\"doi\":\"10.1038/s41427-023-00485-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of perovskite structures with multiferroic magnetoelectric coupling effects opens up new opportunities in fields such as the creation of next-generation spin-dependent multistate information storage technologies. In this work, we prepared a transition metal-implanted perovskite with multiferroic magnetoelectric coupling, in which both magnetoelectric coupling and a blueshift of photoluminescence were observed. The introduction of transition metal-generated polarized spin interacts with the electronic orbit through spin–orbital coupling to lead to a pronounced octahedron distortion, where the temperature dependence of the dielectric constant undergoes a ferroelectric polarization transition. An external magnetic field could enhance the strength of spin polarization to further affect the magnitude of electric polarization. Moreover, applying an electric field tunes the distortion of the octahedron dependence of electric polarization to feed back to the change in spin polarization. Overall, the spin polarization-induced electric polarization in perovskites provides a unique approach to realizing the room-temperature magnetoelectric coupling of multiferroic materials. The coexistence of ferroelectricity and ferromagnetism has been a traditional challenge for a long time. In this work, we propose a method of transition metal implantation into hybrid perovskites, which realizes the mutual regulation of magnetism and electricity, and obtains an obvious multiferroic magnetic-electric coupling effect. This study provides a new idea for realizing room-temperature magnetoelectric coupling of multiferroic materials employing ion implantation and paves the way for the realization of a new generation of spin-dependent electronic devices.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"15 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-023-00485-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-023-00485-w\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-023-00485-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Octahedron distortion-triggered dipole–spin interaction in multiferroic magnetoelectric perovskites
The design of perovskite structures with multiferroic magnetoelectric coupling effects opens up new opportunities in fields such as the creation of next-generation spin-dependent multistate information storage technologies. In this work, we prepared a transition metal-implanted perovskite with multiferroic magnetoelectric coupling, in which both magnetoelectric coupling and a blueshift of photoluminescence were observed. The introduction of transition metal-generated polarized spin interacts with the electronic orbit through spin–orbital coupling to lead to a pronounced octahedron distortion, where the temperature dependence of the dielectric constant undergoes a ferroelectric polarization transition. An external magnetic field could enhance the strength of spin polarization to further affect the magnitude of electric polarization. Moreover, applying an electric field tunes the distortion of the octahedron dependence of electric polarization to feed back to the change in spin polarization. Overall, the spin polarization-induced electric polarization in perovskites provides a unique approach to realizing the room-temperature magnetoelectric coupling of multiferroic materials. The coexistence of ferroelectricity and ferromagnetism has been a traditional challenge for a long time. In this work, we propose a method of transition metal implantation into hybrid perovskites, which realizes the mutual regulation of magnetism and electricity, and obtains an obvious multiferroic magnetic-electric coupling effect. This study provides a new idea for realizing room-temperature magnetoelectric coupling of multiferroic materials employing ion implantation and paves the way for the realization of a new generation of spin-dependent electronic devices.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.