Yuliang Liu, Jiaxin Zhang, Dezhi Peng, Mingxin Huang, Xinyu Wang, Ji Tang, Can Huang, Dahua Lin, Chunhua Shen, Xiang Bai, Lianwen Jin
{"title":"SPTS v2:单点场景文本识别","authors":"Yuliang Liu, Jiaxin Zhang, Dezhi Peng, Mingxin Huang, Xinyu Wang, Ji Tang, Can Huang, Dahua Lin, Chunhua Shen, Xiang Bai, Lianwen Jin","doi":"10.48550/arXiv.2301.01635","DOIUrl":null,"url":null,"abstract":"End-to-end scene text spotting has made significant progress due to its intrinsic synergy between text detection and recognition. Previous methods commonly regard manual annotations such as horizontal rectangles, rotated rectangles, quadrangles, and polygons as a prerequisite, which are much more expensive than using single-point. Our new framework, SPTS v2, allows us to train high-performing text-spotting models using a single-point annotation. SPTS v2 reserves the advantage of the auto-regressive Transformer with an Instance Assignment Decoder (IAD) through sequentially predicting the center points of all text instances inside the same predicting sequence, while with a Parallel Recognition Decoder (PRD) for text recognition in parallel, which significantly reduces the requirement of the length of the sequence. These two decoders share the same parameters and are interactively connected with a simple but effective information transmission process to pass the gradient and information. Comprehensive experiments on various existing benchmark datasets demonstrate the SPTS v2 can outperform previous state-of-the-art single-point text spotters with fewer parameters while achieving 19× faster inference speed. Within the context of our SPTS v2 framework, our experiments suggest a potential preference for single-point representation in scene text spotting when compared to other representations. Such an attempt provides a significant opportunity for scene text spotting applications beyond the realms of existing paradigms. Code is available at: https://github.com/Yuliang-Liu/SPTSv2.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":"PP 1","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SPTS v2: Single-Point Scene Text Spotting\",\"authors\":\"Yuliang Liu, Jiaxin Zhang, Dezhi Peng, Mingxin Huang, Xinyu Wang, Ji Tang, Can Huang, Dahua Lin, Chunhua Shen, Xiang Bai, Lianwen Jin\",\"doi\":\"10.48550/arXiv.2301.01635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"End-to-end scene text spotting has made significant progress due to its intrinsic synergy between text detection and recognition. Previous methods commonly regard manual annotations such as horizontal rectangles, rotated rectangles, quadrangles, and polygons as a prerequisite, which are much more expensive than using single-point. Our new framework, SPTS v2, allows us to train high-performing text-spotting models using a single-point annotation. SPTS v2 reserves the advantage of the auto-regressive Transformer with an Instance Assignment Decoder (IAD) through sequentially predicting the center points of all text instances inside the same predicting sequence, while with a Parallel Recognition Decoder (PRD) for text recognition in parallel, which significantly reduces the requirement of the length of the sequence. These two decoders share the same parameters and are interactively connected with a simple but effective information transmission process to pass the gradient and information. Comprehensive experiments on various existing benchmark datasets demonstrate the SPTS v2 can outperform previous state-of-the-art single-point text spotters with fewer parameters while achieving 19× faster inference speed. Within the context of our SPTS v2 framework, our experiments suggest a potential preference for single-point representation in scene text spotting when compared to other representations. Such an attempt provides a significant opportunity for scene text spotting applications beyond the realms of existing paradigms. Code is available at: https://github.com/Yuliang-Liu/SPTSv2.\",\"PeriodicalId\":13426,\"journal\":{\"name\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"volume\":\"PP 1\",\"pages\":\"\"},\"PeriodicalIF\":20.8000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.01635\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.01635","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
End-to-end scene text spotting has made significant progress due to its intrinsic synergy between text detection and recognition. Previous methods commonly regard manual annotations such as horizontal rectangles, rotated rectangles, quadrangles, and polygons as a prerequisite, which are much more expensive than using single-point. Our new framework, SPTS v2, allows us to train high-performing text-spotting models using a single-point annotation. SPTS v2 reserves the advantage of the auto-regressive Transformer with an Instance Assignment Decoder (IAD) through sequentially predicting the center points of all text instances inside the same predicting sequence, while with a Parallel Recognition Decoder (PRD) for text recognition in parallel, which significantly reduces the requirement of the length of the sequence. These two decoders share the same parameters and are interactively connected with a simple but effective information transmission process to pass the gradient and information. Comprehensive experiments on various existing benchmark datasets demonstrate the SPTS v2 can outperform previous state-of-the-art single-point text spotters with fewer parameters while achieving 19× faster inference speed. Within the context of our SPTS v2 framework, our experiments suggest a potential preference for single-point representation in scene text spotting when compared to other representations. Such an attempt provides a significant opportunity for scene text spotting applications beyond the realms of existing paradigms. Code is available at: https://github.com/Yuliang-Liu/SPTSv2.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.