全纸集成疏水和透气压阻传感器,用于高湿度和水下可穿戴运动监测

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2023-03-11 DOI:10.1038/s41528-023-00244-5
Yuewen Wei, Xuewen Shi, Zhuoqi Yao, Jiacai Zhi, Lixuan Hu, Ren Yan, Chuanqian Shi, Hai-Dong Yu, Wei Huang
{"title":"全纸集成疏水和透气压阻传感器,用于高湿度和水下可穿戴运动监测","authors":"Yuewen Wei, Xuewen Shi, Zhuoqi Yao, Jiacai Zhi, Lixuan Hu, Ren Yan, Chuanqian Shi, Hai-Dong Yu, Wei Huang","doi":"10.1038/s41528-023-00244-5","DOIUrl":null,"url":null,"abstract":"Paper-based electronics have attracted much attention due to their softness, degradability, and low cost. However, paper-based sensors are difficult to apply to high-humidity environments or even underwater. Here, we report a fully paper-integrated piezoresistive sensing system that exhibits flexibility, waterproofing, air permeability, and biocompatibility. This system consists of hydrophobic paper as the substrate and encapsulation layer, conductive paper with a double ‘zig-zag’ and dotted surface structure as the sensing layer, and silver paste films as the interconnects. The structural design of the sensing layer helps to increase the contact area in adjacent layers under pressure and further improves the pressure sensitivity. The piezoresistive system can be worn on human skin in the ambient environment, wet environment, and water for real-time monitoring of physiological signals with air permeability and waterproofing due to its hydrophobic fiber structure. Such a device provides a reliable, economical, and eco-friendly solution to wearable technologies.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00244-5.pdf","citationCount":"7","resultStr":"{\"title\":\"Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring\",\"authors\":\"Yuewen Wei, Xuewen Shi, Zhuoqi Yao, Jiacai Zhi, Lixuan Hu, Ren Yan, Chuanqian Shi, Hai-Dong Yu, Wei Huang\",\"doi\":\"10.1038/s41528-023-00244-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paper-based electronics have attracted much attention due to their softness, degradability, and low cost. However, paper-based sensors are difficult to apply to high-humidity environments or even underwater. Here, we report a fully paper-integrated piezoresistive sensing system that exhibits flexibility, waterproofing, air permeability, and biocompatibility. This system consists of hydrophobic paper as the substrate and encapsulation layer, conductive paper with a double ‘zig-zag’ and dotted surface structure as the sensing layer, and silver paste films as the interconnects. The structural design of the sensing layer helps to increase the contact area in adjacent layers under pressure and further improves the pressure sensitivity. The piezoresistive system can be worn on human skin in the ambient environment, wet environment, and water for real-time monitoring of physiological signals with air permeability and waterproofing due to its hydrophobic fiber structure. Such a device provides a reliable, economical, and eco-friendly solution to wearable technologies.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2023-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-023-00244-5.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-023-00244-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00244-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 7

摘要

纸基电子器件因其柔软、可降解和低成本而备受关注。然而,纸基传感器很难应用于高湿度环境甚至水下环境。在此,我们报告了一种完全集成在纸上的压阻传感系统,它具有柔韧性、防水性、透气性和生物兼容性。该系统由疏水性纸张作为基底和封装层,具有双 "之 "字形和点状表面结构的导电纸张作为传感层,银浆薄膜作为互连层。传感层的结构设计有助于增加压力下相邻层的接触面积,进一步提高压力灵敏度。该压阻系统可佩戴在人体皮肤上,在环境、潮湿环境和水中实时监测生理信号,其疏水纤维结构具有透气性和防水性。这种装置为可穿戴技术提供了可靠、经济和环保的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring
Paper-based electronics have attracted much attention due to their softness, degradability, and low cost. However, paper-based sensors are difficult to apply to high-humidity environments or even underwater. Here, we report a fully paper-integrated piezoresistive sensing system that exhibits flexibility, waterproofing, air permeability, and biocompatibility. This system consists of hydrophobic paper as the substrate and encapsulation layer, conductive paper with a double ‘zig-zag’ and dotted surface structure as the sensing layer, and silver paste films as the interconnects. The structural design of the sensing layer helps to increase the contact area in adjacent layers under pressure and further improves the pressure sensitivity. The piezoresistive system can be worn on human skin in the ambient environment, wet environment, and water for real-time monitoring of physiological signals with air permeability and waterproofing due to its hydrophobic fiber structure. Such a device provides a reliable, economical, and eco-friendly solution to wearable technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Interplay between strain and charge in Cu(In,Ga)Se2 flexible photovoltaics Creating highly efficient stretchable OLEDs with nanowavy structures for angle-independent narrow band emission Strong and high-conductivity hydrogels with all-polymer nanofibrous networks for applications as high-capacitance flexible electrodes Electrically tunable infrared optics enabled by flexible ion-permeable conducting polymer-cellulose paper Conformal printed electronics on flexible substrates and inflatable catheters using lathe-based aerosol jet printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1