增加氮添加量可抑制温带草甸草原凋落物的长期分解

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2022-08-08 DOI:10.1093/jpe/rtac078
Pei Zheng, R. Zhao, Liangchao Jiang, Guojiao Yang, Yinliu Wang, Ruzhen Wang, Xingguo Han, Qiushi Ning
{"title":"增加氮添加量可抑制温带草甸草原凋落物的长期分解","authors":"Pei Zheng, R. Zhao, Liangchao Jiang, Guojiao Yang, Yinliu Wang, Ruzhen Wang, Xingguo Han, Qiushi Ning","doi":"10.1093/jpe/rtac078","DOIUrl":null,"url":null,"abstract":"\n Plant litter decomposition is critical for the carbon (C) balance and nutrient turnover in terrestrial ecosystems and sensitive to the ongoing anthropogenic nitrogen (N) input. Previous studies evaluating the N effect on litter decomposition relied mostly on short-term experiments (< 2 years), which probably masked the real N effect on litter decomposition. Therefore, long-lasting experiments are imperative for the overall evaluation of the litter decomposition dynamics under N enrichment. We conducted a long-term (4-year) N addition experiment with N levels from 0 – 50 g N m -2 yr -1 to examine the potential abiotic and biotic factors in regulating the decomposition process of litterfall from the dominant species Leymus chinensis. The long-term experiment exhibited a consistent decrease of decomposition rate with increasing N addition rates, providing strong evidence showing the inhibitory effect of N addition on decomposition. The N-induced alterations in soil environment (acidification and nutrient stoichiometry), microbial activity (microbial biomass and enzyme activity), changes of litter quality (residual lignin and nutrient content) and plant community (aboveground productivity and species richness) jointly contributed to the lowered decomposition. During the whole decomposition process, the changes of litter quality, including accumulation of lignin and the concentrations of nutrient, were mainly driven by the soil environment and microbial activity in this N-enriched environment. The findings help clarify how increasing N input rates affect long-term litter decomposition, and improve the mechanistic understanding of the linkages between ecosystem N enrichment and C cycling.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing nitrogen addition rates suppressed long-term litter decomposition in a temperate meadow steppe\",\"authors\":\"Pei Zheng, R. Zhao, Liangchao Jiang, Guojiao Yang, Yinliu Wang, Ruzhen Wang, Xingguo Han, Qiushi Ning\",\"doi\":\"10.1093/jpe/rtac078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Plant litter decomposition is critical for the carbon (C) balance and nutrient turnover in terrestrial ecosystems and sensitive to the ongoing anthropogenic nitrogen (N) input. Previous studies evaluating the N effect on litter decomposition relied mostly on short-term experiments (< 2 years), which probably masked the real N effect on litter decomposition. Therefore, long-lasting experiments are imperative for the overall evaluation of the litter decomposition dynamics under N enrichment. We conducted a long-term (4-year) N addition experiment with N levels from 0 – 50 g N m -2 yr -1 to examine the potential abiotic and biotic factors in regulating the decomposition process of litterfall from the dominant species Leymus chinensis. The long-term experiment exhibited a consistent decrease of decomposition rate with increasing N addition rates, providing strong evidence showing the inhibitory effect of N addition on decomposition. The N-induced alterations in soil environment (acidification and nutrient stoichiometry), microbial activity (microbial biomass and enzyme activity), changes of litter quality (residual lignin and nutrient content) and plant community (aboveground productivity and species richness) jointly contributed to the lowered decomposition. During the whole decomposition process, the changes of litter quality, including accumulation of lignin and the concentrations of nutrient, were mainly driven by the soil environment and microbial activity in this N-enriched environment. The findings help clarify how increasing N input rates affect long-term litter decomposition, and improve the mechanistic understanding of the linkages between ecosystem N enrichment and C cycling.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jpe/rtac078\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jpe/rtac078","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

植物凋落物分解对陆地生态系统碳(C)平衡和养分周转至关重要,对持续的人为氮(N)输入非常敏感。以往评价N对凋落物分解影响的研究大多依赖于短期实验(< 2年),这可能掩盖了N对凋落物分解的真实影响。因此,长期实验是全面评价富氮条件下凋落物分解动态的必要条件。为了研究优势种羊草凋落物分解过程中可能存在的非生物和生物因素,我们进行了长期(4年)N添加试验,N水平为0 ~ 50 g N m -2 yr -1。长期实验显示,随着N添加量的增加,分解速率一致降低,为N添加对分解的抑制作用提供了强有力的证据。氮诱导的土壤环境(酸化和养分化学计量)、微生物活性(微生物生物量和酶活性)、凋落物质量(残余木质素和养分含量)和植物群落(地上生产力和物种丰富度)的变化共同导致了分解的降低。在整个分解过程中,凋落物质量的变化,包括木质素积累和养分浓度的变化,主要受土壤环境和富氮环境下微生物活动的驱动。这些发现有助于阐明增加N输入率如何影响凋落物的长期分解,并提高对生态系统N富集与C循环之间联系的机制理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increasing nitrogen addition rates suppressed long-term litter decomposition in a temperate meadow steppe
Plant litter decomposition is critical for the carbon (C) balance and nutrient turnover in terrestrial ecosystems and sensitive to the ongoing anthropogenic nitrogen (N) input. Previous studies evaluating the N effect on litter decomposition relied mostly on short-term experiments (< 2 years), which probably masked the real N effect on litter decomposition. Therefore, long-lasting experiments are imperative for the overall evaluation of the litter decomposition dynamics under N enrichment. We conducted a long-term (4-year) N addition experiment with N levels from 0 – 50 g N m -2 yr -1 to examine the potential abiotic and biotic factors in regulating the decomposition process of litterfall from the dominant species Leymus chinensis. The long-term experiment exhibited a consistent decrease of decomposition rate with increasing N addition rates, providing strong evidence showing the inhibitory effect of N addition on decomposition. The N-induced alterations in soil environment (acidification and nutrient stoichiometry), microbial activity (microbial biomass and enzyme activity), changes of litter quality (residual lignin and nutrient content) and plant community (aboveground productivity and species richness) jointly contributed to the lowered decomposition. During the whole decomposition process, the changes of litter quality, including accumulation of lignin and the concentrations of nutrient, were mainly driven by the soil environment and microbial activity in this N-enriched environment. The findings help clarify how increasing N input rates affect long-term litter decomposition, and improve the mechanistic understanding of the linkages between ecosystem N enrichment and C cycling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1