基于自适应注意机制和大余量Softmax的小镜头目标检测

IF 0.6 4区 工程技术 Q4 MATERIALS SCIENCE, TEXTILES AATCC Journal of Research Pub Date : 2022-12-16 DOI:10.1177/24723444221136626
Rong Huang, Runchao Lin, Aihua Dong, Zhijie Wang
{"title":"基于自适应注意机制和大余量Softmax的小镜头目标检测","authors":"Rong Huang, Runchao Lin, Aihua Dong, Zhijie Wang","doi":"10.1177/24723444221136626","DOIUrl":null,"url":null,"abstract":"Recently, a DCNet consisting of a dense relation distillation module and a context-aware aggregation module has achieved remarkable performance for the few-shot object detection task. In this article, we aim to improve the DCNet from the following two aspects. First, we design an adaptive attention module, which is equipped in the front of the dense relation distillation module, and can be trained together with the remainder parts of the DCNet. After training, the adaptive attention module helps to enhance foreground features and to suppress the background features. Second, we introduce a large-margin Softmax into the dense relation distillation module. The large-margin Softmax with a hyperparameter can normalize features without reducing the discriminability between different classes. We conduct extensive experiments on the PASCAL visual object classes and the Microsoft common objects in context data sets. The experimental results show that the proposed method can work under the few-shot scenario and achieves the mean average precision of 50.8% on the PASCAL visual object classes data set and 13.1% on the Microsoft common objects in context data set, which both outperform the existing baselines. Moreover, ablation studies and visualizations validate the usefulness of the adaptive attention module and the large-margin Softmax. The proposed method can be applied to recognize rare patterns in fabric images or detect clothes with new styles in natural scene images.","PeriodicalId":6955,"journal":{"name":"AATCC Journal of Research","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-Shot Object Detection Based on Adaptive Attention Mechanism and Large-Margin Softmax\",\"authors\":\"Rong Huang, Runchao Lin, Aihua Dong, Zhijie Wang\",\"doi\":\"10.1177/24723444221136626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a DCNet consisting of a dense relation distillation module and a context-aware aggregation module has achieved remarkable performance for the few-shot object detection task. In this article, we aim to improve the DCNet from the following two aspects. First, we design an adaptive attention module, which is equipped in the front of the dense relation distillation module, and can be trained together with the remainder parts of the DCNet. After training, the adaptive attention module helps to enhance foreground features and to suppress the background features. Second, we introduce a large-margin Softmax into the dense relation distillation module. The large-margin Softmax with a hyperparameter can normalize features without reducing the discriminability between different classes. We conduct extensive experiments on the PASCAL visual object classes and the Microsoft common objects in context data sets. The experimental results show that the proposed method can work under the few-shot scenario and achieves the mean average precision of 50.8% on the PASCAL visual object classes data set and 13.1% on the Microsoft common objects in context data set, which both outperform the existing baselines. Moreover, ablation studies and visualizations validate the usefulness of the adaptive attention module and the large-margin Softmax. The proposed method can be applied to recognize rare patterns in fabric images or detect clothes with new styles in natural scene images.\",\"PeriodicalId\":6955,\"journal\":{\"name\":\"AATCC Journal of Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AATCC Journal of Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/24723444221136626\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AATCC Journal of Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/24723444221136626","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

最近,一种由密集关系蒸馏模块和上下文感知聚合模块组成的DCNet在小样本目标检测任务中取得了显著的性能。在本文中,我们将从以下两个方面对DCNet进行改进。首先,我们设计了一个自适应注意力模块,该模块安装在密集关系蒸馏模块的前端,可以与DCNet的其余部分一起训练。经过训练后,自适应注意模块有助于增强前景特征,抑制背景特征。其次,我们在密集关系蒸馏模块中引入了大余量Softmax。带有超参数的大间距Softmax可以在不降低不同类别之间的可区分性的情况下对特征进行归一化。我们在上下文数据集中对PASCAL可视化对象类和Microsoft通用对象进行了广泛的实验。实验结果表明,该方法可以在少镜头场景下工作,在PASCAL可视化对象类数据集上达到50.8%的平均精度,在Microsoft上下文通用对象数据集上达到13.1%的平均精度,均优于现有基线。此外,消融研究和可视化验证了自适应注意力模块和大裕度Softmax的有效性。该方法可用于织物图像中罕见图案的识别或自然场景图像中新款式服装的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Few-Shot Object Detection Based on Adaptive Attention Mechanism and Large-Margin Softmax
Recently, a DCNet consisting of a dense relation distillation module and a context-aware aggregation module has achieved remarkable performance for the few-shot object detection task. In this article, we aim to improve the DCNet from the following two aspects. First, we design an adaptive attention module, which is equipped in the front of the dense relation distillation module, and can be trained together with the remainder parts of the DCNet. After training, the adaptive attention module helps to enhance foreground features and to suppress the background features. Second, we introduce a large-margin Softmax into the dense relation distillation module. The large-margin Softmax with a hyperparameter can normalize features without reducing the discriminability between different classes. We conduct extensive experiments on the PASCAL visual object classes and the Microsoft common objects in context data sets. The experimental results show that the proposed method can work under the few-shot scenario and achieves the mean average precision of 50.8% on the PASCAL visual object classes data set and 13.1% on the Microsoft common objects in context data set, which both outperform the existing baselines. Moreover, ablation studies and visualizations validate the usefulness of the adaptive attention module and the large-margin Softmax. The proposed method can be applied to recognize rare patterns in fabric images or detect clothes with new styles in natural scene images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AATCC Journal of Research
AATCC Journal of Research MATERIALS SCIENCE, TEXTILES-
CiteScore
1.30
自引率
0.00%
发文量
34
期刊介绍: AATCC Journal of Research. This textile research journal has a broad scope: from advanced materials, fibers, and textile and polymer chemistry, to color science, apparel design, and sustainability. Now indexed by Science Citation Index Extended (SCIE) and discoverable in the Clarivate Analytics Web of Science Core Collection! The Journal’s impact factor is available in Journal Citation Reports.
期刊最新文献
Effect of Microwave Irradiation on Coloring and Mechanical Properties of Direct Dyed Fabric Statistical Optimization of Process Variables for the Dyeing of Jute with Marigold Petals Using a Dual Mordant System Application of Rare Earth Marking on Anti-counterfeiting Waterless/Less-Water Dyeing Technology Carbon Footprint of Wool at Cradle to Farm-Gate Stage in Victoria, Australia A Novel Polyvinylidene Fluoride/Keratin Electret Filter With Comprehensive Performance and High-Efficiency PM0.3 Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1