{"title":"用基本量子力学方法研究聚合物-填料复合材料电学性能的温度依赖性","authors":"M. Matsuo, Rong Zhang, Y. Bin","doi":"10.1515/cti-2020-0014","DOIUrl":null,"url":null,"abstract":"Abstract In today’s society, with a high percentage of elderly people, floor heating to ensure constant temperature and heat jackets in winter play important roles in winter to them to live comfortable lives without compromising health – except tropical zones. Under floor heating maintains a comfortable temperature in a room without polluting the air and heat jackets allow for light clothing at comfortable temperatures. The two facilities are attributed to Joule heat generated by tunnel currents between adjacent short carbon fillers in flexible polymer matrixes under low voltage. The current between adjacent conductive fillers is due to electron transfer associated with elementary quantum mechanics. Most of undergraduate students investigating polymer physics will have learned about electron transfer in relation to the temperature dependence of the conductivity of conductive filler-insulator polymer composites as well as the phenomenon of Joule heat at high school. Despite their industrial importance, most students show little interest for investigating electric properties, since most of polymers are insulation materials. Polymer scientists have carried out qualitative analyses for tunneling current using well-known simplified equations derived from complicated mathematical process formulated by solid-state physicists. Hence this paper is focused on a teaching approach for temperature dependence on electric properties of the polymer-filler composites relating to tunnel current in terms of elementary quantum mechanics. The approach also attempts to bridge education and research by including reference to the application limit of the well-known theories to such complicated composite systems that fillers are dispersed uniformly in the polymer matrix.","PeriodicalId":93272,"journal":{"name":"Chemistry Teacher International : best practices in chemistry education","volume":"3 1","pages":"185 - 211"},"PeriodicalIF":2.2000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cti-2020-0014","citationCount":"0","resultStr":"{\"title\":\"An understandable approach to the temperature dependence of electric properties of polymer-filler composites using elementary quantum mechanics\",\"authors\":\"M. Matsuo, Rong Zhang, Y. Bin\",\"doi\":\"10.1515/cti-2020-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In today’s society, with a high percentage of elderly people, floor heating to ensure constant temperature and heat jackets in winter play important roles in winter to them to live comfortable lives without compromising health – except tropical zones. Under floor heating maintains a comfortable temperature in a room without polluting the air and heat jackets allow for light clothing at comfortable temperatures. The two facilities are attributed to Joule heat generated by tunnel currents between adjacent short carbon fillers in flexible polymer matrixes under low voltage. The current between adjacent conductive fillers is due to electron transfer associated with elementary quantum mechanics. Most of undergraduate students investigating polymer physics will have learned about electron transfer in relation to the temperature dependence of the conductivity of conductive filler-insulator polymer composites as well as the phenomenon of Joule heat at high school. Despite their industrial importance, most students show little interest for investigating electric properties, since most of polymers are insulation materials. Polymer scientists have carried out qualitative analyses for tunneling current using well-known simplified equations derived from complicated mathematical process formulated by solid-state physicists. Hence this paper is focused on a teaching approach for temperature dependence on electric properties of the polymer-filler composites relating to tunnel current in terms of elementary quantum mechanics. The approach also attempts to bridge education and research by including reference to the application limit of the well-known theories to such complicated composite systems that fillers are dispersed uniformly in the polymer matrix.\",\"PeriodicalId\":93272,\"journal\":{\"name\":\"Chemistry Teacher International : best practices in chemistry education\",\"volume\":\"3 1\",\"pages\":\"185 - 211\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cti-2020-0014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Teacher International : best practices in chemistry education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cti-2020-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Teacher International : best practices in chemistry education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cti-2020-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
An understandable approach to the temperature dependence of electric properties of polymer-filler composites using elementary quantum mechanics
Abstract In today’s society, with a high percentage of elderly people, floor heating to ensure constant temperature and heat jackets in winter play important roles in winter to them to live comfortable lives without compromising health – except tropical zones. Under floor heating maintains a comfortable temperature in a room without polluting the air and heat jackets allow for light clothing at comfortable temperatures. The two facilities are attributed to Joule heat generated by tunnel currents between adjacent short carbon fillers in flexible polymer matrixes under low voltage. The current between adjacent conductive fillers is due to electron transfer associated with elementary quantum mechanics. Most of undergraduate students investigating polymer physics will have learned about electron transfer in relation to the temperature dependence of the conductivity of conductive filler-insulator polymer composites as well as the phenomenon of Joule heat at high school. Despite their industrial importance, most students show little interest for investigating electric properties, since most of polymers are insulation materials. Polymer scientists have carried out qualitative analyses for tunneling current using well-known simplified equations derived from complicated mathematical process formulated by solid-state physicists. Hence this paper is focused on a teaching approach for temperature dependence on electric properties of the polymer-filler composites relating to tunnel current in terms of elementary quantum mechanics. The approach also attempts to bridge education and research by including reference to the application limit of the well-known theories to such complicated composite systems that fillers are dispersed uniformly in the polymer matrix.