基于优化传感器选择和自适应Kriging模型的频谱图构建

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Radioengineering Pub Date : 2022-09-01 DOI:10.13164/re.2022.0422
Z. Ding, J. Zhang, Y. Liu, J. Wang, G. Chen, L. Cao
{"title":"基于优化传感器选择和自适应Kriging模型的频谱图构建","authors":"Z. Ding, J. Zhang, Y. Liu, J. Wang, G. Chen, L. Cao","doi":"10.13164/re.2022.0422","DOIUrl":null,"url":null,"abstract":". Spectrum map ( SM ) is an important tool to reflect the spectrum usage in the electromagnetic environment. To address the problems of low precision and poor efficiency in the SM construction, this paper develops a novel SM construction approach based on the artificial bee colony enabled sensor layout optimization and an adaptive Kriging model based on spatial autocorrelation. Considering the significant autocorrelation between sensor attributes caused by the exponentially decaying shadow fading of signal propagation, the sensor estimation groups are established, and the estimation results are obtained by the Kriging model. The simulation results show that the proposed SM construction scheme can not only effectively reduce the overhead of sensor resources but also obtain a high SM construction accuracy. Extensive simulation results show that the proposed method can reduce the RMSE of SM construction by 37.56%, 25.32% and 12.89% re-spectively compared with Random-OK when the standard deviation of shadow fading is 1 dB, 3 dB and 6 dB.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrum Map Construction Based on Optimized Sensor Selection and Adaptive Kriging Model\",\"authors\":\"Z. Ding, J. Zhang, Y. Liu, J. Wang, G. Chen, L. Cao\",\"doi\":\"10.13164/re.2022.0422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Spectrum map ( SM ) is an important tool to reflect the spectrum usage in the electromagnetic environment. To address the problems of low precision and poor efficiency in the SM construction, this paper develops a novel SM construction approach based on the artificial bee colony enabled sensor layout optimization and an adaptive Kriging model based on spatial autocorrelation. Considering the significant autocorrelation between sensor attributes caused by the exponentially decaying shadow fading of signal propagation, the sensor estimation groups are established, and the estimation results are obtained by the Kriging model. The simulation results show that the proposed SM construction scheme can not only effectively reduce the overhead of sensor resources but also obtain a high SM construction accuracy. Extensive simulation results show that the proposed method can reduce the RMSE of SM construction by 37.56%, 25.32% and 12.89% re-spectively compared with Random-OK when the standard deviation of shadow fading is 1 dB, 3 dB and 6 dB.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2022.0422\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0422","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

频谱图(SM)是反映电磁环境中频谱使用情况的重要工具。针对SM构建中精度低、效率低的问题,本文提出了一种基于人工蜂群的传感器布局优化的SM构建方法和基于空间自相关的自适应Kriging模型。考虑到信号传播的指数衰减阴影衰落引起的传感器属性之间的显著自相关,建立了传感器估计组,并通过克里格模型获得了估计结果。仿真结果表明,所提出的SM构造方案不仅可以有效地减少传感器资源的开销,而且可以获得较高的SM构造精度。广泛的仿真结果表明,当阴影衰落的标准偏差为1dB、3dB和6dB时,与随机OK相比,该方法可将SM结构的均方根误差分别降低37.56%、25.32%和12.89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectrum Map Construction Based on Optimized Sensor Selection and Adaptive Kriging Model
. Spectrum map ( SM ) is an important tool to reflect the spectrum usage in the electromagnetic environment. To address the problems of low precision and poor efficiency in the SM construction, this paper develops a novel SM construction approach based on the artificial bee colony enabled sensor layout optimization and an adaptive Kriging model based on spatial autocorrelation. Considering the significant autocorrelation between sensor attributes caused by the exponentially decaying shadow fading of signal propagation, the sensor estimation groups are established, and the estimation results are obtained by the Kriging model. The simulation results show that the proposed SM construction scheme can not only effectively reduce the overhead of sensor resources but also obtain a high SM construction accuracy. Extensive simulation results show that the proposed method can reduce the RMSE of SM construction by 37.56%, 25.32% and 12.89% re-spectively compared with Random-OK when the standard deviation of shadow fading is 1 dB, 3 dB and 6 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radioengineering
Radioengineering 工程技术-工程:电子与电气
CiteScore
2.00
自引率
9.10%
发文量
0
审稿时长
5.7 months
期刊介绍: Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields. Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering. The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.
期刊最新文献
Test Evaluation Method for Second-order Intermodulation False Alarm Interference Performance of the User in the TDD NOMA Cellular Networks Enabling FFR An Intelligent Denoising Method for Jamming Pattern Recognition under Noisy Conditions Reconstruction of Mixed Boundary Objects and Classification Using Deep Learning and Linear Sampling Method Coverless Steganography Based on Low Similarity Feature Selection in DCT Domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1