S. Hoseinzadeh, E. Raeisi, Y. Lemoigne, E. Heidarian
{"title":"5-氟尿嘧啶联合氧化锌NPs对人乳腺癌MCF-7细胞的影响:P53基因表达、Bcl-2信号通路和侵袭活性","authors":"S. Hoseinzadeh, E. Raeisi, Y. Lemoigne, E. Heidarian","doi":"10.22038/NMJ.2019.06.000010","DOIUrl":null,"url":null,"abstract":"Objective(s): The significant contribution of nanoparticles to cancer treatment has attracted therapeutic attention. The present study aimed to evaluate the synergistic effects of 5-fluorouracil (5-FU) and zinc oxide nanoparticles (ZnO NPs) as multimodal drug delivery on human breast cancer MCF-7 cells.Materials and Methods: In this in-vitro study, the impact of 5-FU and ZnO NPs in the single or combined forms was evaluated on cell viability, colony formation, apoptosis, p53 gene expression, and Bcl-2 signaling protein in MCF-7 breast cancer cell line using several techniques, such as MTT, clonogenic assay, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot.Results: In this study, 5-FU combined with ZnO NPs showed synergistic effects against MCF-7 within 48 hours. In addition, the combination of 5-FU and ZnO NPs at the respective concentrations of 1 µM and 45 µg/ml exhibited significant apoptosis (79.53), p53 gene expression (3.6 folds), reduction of cell invasion (9.82), and plating efficiency (5), thereby leading to the significant reduction of cell viability (40±0.9) and decreased Bcl-2 anti-apoptotic protein relative to untreated control cells. Conclusion: According to the results, the synergistic effects of combined ZnO NPs and 5-FU on MCF-7 human breast cancer cells were exerted via Bcl-2 inhibition and the up-regulation of p53 expression.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"6 1","pages":"232-240"},"PeriodicalIF":1.4000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effects of combined 5-Fluorouracil and ZnO NPs on human breast cancer MCF-7 Cells: P53 gene expression, Bcl-2 signaling pathway, and invasion activity\",\"authors\":\"S. Hoseinzadeh, E. Raeisi, Y. Lemoigne, E. Heidarian\",\"doi\":\"10.22038/NMJ.2019.06.000010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective(s): The significant contribution of nanoparticles to cancer treatment has attracted therapeutic attention. The present study aimed to evaluate the synergistic effects of 5-fluorouracil (5-FU) and zinc oxide nanoparticles (ZnO NPs) as multimodal drug delivery on human breast cancer MCF-7 cells.Materials and Methods: In this in-vitro study, the impact of 5-FU and ZnO NPs in the single or combined forms was evaluated on cell viability, colony formation, apoptosis, p53 gene expression, and Bcl-2 signaling protein in MCF-7 breast cancer cell line using several techniques, such as MTT, clonogenic assay, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot.Results: In this study, 5-FU combined with ZnO NPs showed synergistic effects against MCF-7 within 48 hours. In addition, the combination of 5-FU and ZnO NPs at the respective concentrations of 1 µM and 45 µg/ml exhibited significant apoptosis (79.53), p53 gene expression (3.6 folds), reduction of cell invasion (9.82), and plating efficiency (5), thereby leading to the significant reduction of cell viability (40±0.9) and decreased Bcl-2 anti-apoptotic protein relative to untreated control cells. Conclusion: According to the results, the synergistic effects of combined ZnO NPs and 5-FU on MCF-7 human breast cancer cells were exerted via Bcl-2 inhibition and the up-regulation of p53 expression.\",\"PeriodicalId\":18933,\"journal\":{\"name\":\"Nanomedicine Journal\",\"volume\":\"6 1\",\"pages\":\"232-240\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22038/NMJ.2019.06.000010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2019.06.000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Effects of combined 5-Fluorouracil and ZnO NPs on human breast cancer MCF-7 Cells: P53 gene expression, Bcl-2 signaling pathway, and invasion activity
Objective(s): The significant contribution of nanoparticles to cancer treatment has attracted therapeutic attention. The present study aimed to evaluate the synergistic effects of 5-fluorouracil (5-FU) and zinc oxide nanoparticles (ZnO NPs) as multimodal drug delivery on human breast cancer MCF-7 cells.Materials and Methods: In this in-vitro study, the impact of 5-FU and ZnO NPs in the single or combined forms was evaluated on cell viability, colony formation, apoptosis, p53 gene expression, and Bcl-2 signaling protein in MCF-7 breast cancer cell line using several techniques, such as MTT, clonogenic assay, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot.Results: In this study, 5-FU combined with ZnO NPs showed synergistic effects against MCF-7 within 48 hours. In addition, the combination of 5-FU and ZnO NPs at the respective concentrations of 1 µM and 45 µg/ml exhibited significant apoptosis (79.53), p53 gene expression (3.6 folds), reduction of cell invasion (9.82), and plating efficiency (5), thereby leading to the significant reduction of cell viability (40±0.9) and decreased Bcl-2 anti-apoptotic protein relative to untreated control cells. Conclusion: According to the results, the synergistic effects of combined ZnO NPs and 5-FU on MCF-7 human breast cancer cells were exerted via Bcl-2 inhibition and the up-regulation of p53 expression.