Hengxin Xu, Song Yang, Yufeng Chen, Junle Xiong, Shengtao Zhang, Fang Gao, Zhengyong Huang, Hongru Li
{"title":"一种用于长寿命可逆水性锌锰氧化物电池的亲水性超支化聚酯稀释保护性有机添加剂电解质","authors":"Hengxin Xu, Song Yang, Yufeng Chen, Junle Xiong, Shengtao Zhang, Fang Gao, Zhengyong Huang, Hongru Li","doi":"10.1007/s11706-023-0639-7","DOIUrl":null,"url":null,"abstract":"<div><p>A hydrophilic hyperbranched polyester (poly (tetramethylol acetylenediurea (TA)-CO-succinyl chloride) (PTS)) was proposed to be used as an organic additive in aqueous ZnSO<sub>4</sub> electrolyte to achieve a highly reversible zinc/manganese oxide battery. It is found that the zinc symmetric battery based on the 2.0 wt.% PTS/ZnSO<sub>4</sub> electrolyte showed a long cycle stability of more than 2400 h at 1.0 mA·cm<sup>−2</sup>, which is much longer than that including the blank ZnSO<sub>4</sub> electrolyte (140 h). Furthermore, the capacity retention of the Zn||MnO<sub>2</sub> full cells employing the 2.0 wt.% PTS/ZnSO<sub>4</sub> electrolyte remained 85% after 100 cycles at 0.2 A·g<sup>−1</sup>, which is much higher than 20% capacity retention of the cell containing the blank ZnSO<sub>4</sub> electrolyte, and also greater than 59.6% capacity retention of the cell including the 10.0 wt.% TA/ZnSO<sub>4</sub> electrolyte. By using 2.0 wt.% PTS/ZnSO4 electrolytes, the capacity retention of the Zn||MnO2 full cells even reached 65% after 2000 cycles at a higher current density of 1.0 A·g<sup>−1</sup>. It is further demonstrated that the PTS was firmly adsorbed on the zinc anode surface to form a protective layer.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A diluent protective organic additive electrolyte of hydrophilic hyperbranched polyester for long-life reversible aqueous zinc manganese oxide batteries\",\"authors\":\"Hengxin Xu, Song Yang, Yufeng Chen, Junle Xiong, Shengtao Zhang, Fang Gao, Zhengyong Huang, Hongru Li\",\"doi\":\"10.1007/s11706-023-0639-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A hydrophilic hyperbranched polyester (poly (tetramethylol acetylenediurea (TA)-CO-succinyl chloride) (PTS)) was proposed to be used as an organic additive in aqueous ZnSO<sub>4</sub> electrolyte to achieve a highly reversible zinc/manganese oxide battery. It is found that the zinc symmetric battery based on the 2.0 wt.% PTS/ZnSO<sub>4</sub> electrolyte showed a long cycle stability of more than 2400 h at 1.0 mA·cm<sup>−2</sup>, which is much longer than that including the blank ZnSO<sub>4</sub> electrolyte (140 h). Furthermore, the capacity retention of the Zn||MnO<sub>2</sub> full cells employing the 2.0 wt.% PTS/ZnSO<sub>4</sub> electrolyte remained 85% after 100 cycles at 0.2 A·g<sup>−1</sup>, which is much higher than 20% capacity retention of the cell containing the blank ZnSO<sub>4</sub> electrolyte, and also greater than 59.6% capacity retention of the cell including the 10.0 wt.% TA/ZnSO<sub>4</sub> electrolyte. By using 2.0 wt.% PTS/ZnSO4 electrolytes, the capacity retention of the Zn||MnO2 full cells even reached 65% after 2000 cycles at a higher current density of 1.0 A·g<sup>−1</sup>. It is further demonstrated that the PTS was firmly adsorbed on the zinc anode surface to form a protective layer.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-023-0639-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0639-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A diluent protective organic additive electrolyte of hydrophilic hyperbranched polyester for long-life reversible aqueous zinc manganese oxide batteries
A hydrophilic hyperbranched polyester (poly (tetramethylol acetylenediurea (TA)-CO-succinyl chloride) (PTS)) was proposed to be used as an organic additive in aqueous ZnSO4 electrolyte to achieve a highly reversible zinc/manganese oxide battery. It is found that the zinc symmetric battery based on the 2.0 wt.% PTS/ZnSO4 electrolyte showed a long cycle stability of more than 2400 h at 1.0 mA·cm−2, which is much longer than that including the blank ZnSO4 electrolyte (140 h). Furthermore, the capacity retention of the Zn||MnO2 full cells employing the 2.0 wt.% PTS/ZnSO4 electrolyte remained 85% after 100 cycles at 0.2 A·g−1, which is much higher than 20% capacity retention of the cell containing the blank ZnSO4 electrolyte, and also greater than 59.6% capacity retention of the cell including the 10.0 wt.% TA/ZnSO4 electrolyte. By using 2.0 wt.% PTS/ZnSO4 electrolytes, the capacity retention of the Zn||MnO2 full cells even reached 65% after 2000 cycles at a higher current density of 1.0 A·g−1. It is further demonstrated that the PTS was firmly adsorbed on the zinc anode surface to form a protective layer.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.