{"title":"关于二元(互)Archimax联结的精确模拟","authors":"Jan-Frederik Mai","doi":"10.1515/demo-2022-0102","DOIUrl":null,"url":null,"abstract":"Abstract We provide an exact simulation algorithm for bivariate Archimax copulas, including instances with negative association. In contrast to existing simulation approaches, the feasibility of our algorithm is directly linked to the availability of an exact simulation algorithm for the probability measure described by the derivative of the parameterizing Pickands dependence function. We demonstrate that this hypothesis is satisfied in many cases of interest and, in particular, it is satisfied for piece-wise constant Pickands dependence functions, which can approximate the general case to a given level of desired accuracy. Finally, the algorithm can be leveraged to an exact simulation algorithm for bivariate copulas associated with max-infinitely divisible random vectors whose exponent measure has norm-symmetric survival function, so-called reciprocal Archimax copulas.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"10 1","pages":"29 - 47"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"About the exact simulation of bivariate (reciprocal) Archimax copulas\",\"authors\":\"Jan-Frederik Mai\",\"doi\":\"10.1515/demo-2022-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We provide an exact simulation algorithm for bivariate Archimax copulas, including instances with negative association. In contrast to existing simulation approaches, the feasibility of our algorithm is directly linked to the availability of an exact simulation algorithm for the probability measure described by the derivative of the parameterizing Pickands dependence function. We demonstrate that this hypothesis is satisfied in many cases of interest and, in particular, it is satisfied for piece-wise constant Pickands dependence functions, which can approximate the general case to a given level of desired accuracy. Finally, the algorithm can be leveraged to an exact simulation algorithm for bivariate copulas associated with max-infinitely divisible random vectors whose exponent measure has norm-symmetric survival function, so-called reciprocal Archimax copulas.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"10 1\",\"pages\":\"29 - 47\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2022-0102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2022-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
About the exact simulation of bivariate (reciprocal) Archimax copulas
Abstract We provide an exact simulation algorithm for bivariate Archimax copulas, including instances with negative association. In contrast to existing simulation approaches, the feasibility of our algorithm is directly linked to the availability of an exact simulation algorithm for the probability measure described by the derivative of the parameterizing Pickands dependence function. We demonstrate that this hypothesis is satisfied in many cases of interest and, in particular, it is satisfied for piece-wise constant Pickands dependence functions, which can approximate the general case to a given level of desired accuracy. Finally, the algorithm can be leveraged to an exact simulation algorithm for bivariate copulas associated with max-infinitely divisible random vectors whose exponent measure has norm-symmetric survival function, so-called reciprocal Archimax copulas.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations