基于人工智能的血管疾病预测模型

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-09-01 DOI:10.1053/j.semvascsurg.2023.05.002
Fabien Lareyre , Arindam Chaudhuri , Christian-Alexander Behrendt , Alexandre Pouhin , Martin Teraa , Jonathan R. Boyle , Riikka Tulamo , Juliette Raffort
{"title":"基于人工智能的血管疾病预测模型","authors":"Fabien Lareyre ,&nbsp;Arindam Chaudhuri ,&nbsp;Christian-Alexander Behrendt ,&nbsp;Alexandre Pouhin ,&nbsp;Martin Teraa ,&nbsp;Jonathan R. Boyle ,&nbsp;Riikka Tulamo ,&nbsp;Juliette Raffort","doi":"10.1053/j.semvascsurg.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Cardiovascular disease represents a source of major health problems worldwide, and although medical and technical advances have been achieved, they are still associated with high morbidity and mortality rates. Personalized medicine would benefit from novel tools to better predict individual prognosis and outcomes after intervention. Artificial intelligence (AI) has brought new insights to </span>cardiovascular medicine, especially with the use of machine learning techniques that allow the identification of hidden patterns and complex associations in health data without any </span><em>a priori</em><span> assumptions. This review provides an overview on the use of artificial intelligence–based prediction models in vascular diseases, specifically focusing on aortic aneurysm<span>, lower extremity arterial disease<span><span>, and carotid stenosis. Potential benefits include the development of precision medicine </span>in patients with vascular diseases. In addition, the main challenges that remain to be overcome to integrate artificial intelligence–based predictive models in clinical practice are discussed.</span></span></span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence–based predictive models in vascular diseases\",\"authors\":\"Fabien Lareyre ,&nbsp;Arindam Chaudhuri ,&nbsp;Christian-Alexander Behrendt ,&nbsp;Alexandre Pouhin ,&nbsp;Martin Teraa ,&nbsp;Jonathan R. Boyle ,&nbsp;Riikka Tulamo ,&nbsp;Juliette Raffort\",\"doi\":\"10.1053/j.semvascsurg.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Cardiovascular disease represents a source of major health problems worldwide, and although medical and technical advances have been achieved, they are still associated with high morbidity and mortality rates. Personalized medicine would benefit from novel tools to better predict individual prognosis and outcomes after intervention. Artificial intelligence (AI) has brought new insights to </span>cardiovascular medicine, especially with the use of machine learning techniques that allow the identification of hidden patterns and complex associations in health data without any </span><em>a priori</em><span> assumptions. This review provides an overview on the use of artificial intelligence–based prediction models in vascular diseases, specifically focusing on aortic aneurysm<span>, lower extremity arterial disease<span><span>, and carotid stenosis. Potential benefits include the development of precision medicine </span>in patients with vascular diseases. In addition, the main challenges that remain to be overcome to integrate artificial intelligence–based predictive models in clinical practice are discussed.</span></span></span></p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895796723000388\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895796723000388","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病是全世界主要健康问题的一个根源,尽管在医学和技术方面取得了进步,但它们仍然与高发病率和死亡率有关。个性化医疗将受益于新的工具,以更好地预测个体预后和干预后的结果。人工智能(AI)为心血管医学带来了新的见解,特别是机器学习技术的使用,可以在没有任何先验假设的情况下识别健康数据中的隐藏模式和复杂关联。本文综述了基于人工智能的预测模型在血管疾病中的应用,特别是在主动脉瘤、下肢动脉疾病和颈动脉狭窄方面。潜在的好处包括发展血管疾病患者的精准医学。此外,还讨论了在临床实践中整合基于人工智能的预测模型需要克服的主要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence–based predictive models in vascular diseases

Cardiovascular disease represents a source of major health problems worldwide, and although medical and technical advances have been achieved, they are still associated with high morbidity and mortality rates. Personalized medicine would benefit from novel tools to better predict individual prognosis and outcomes after intervention. Artificial intelligence (AI) has brought new insights to cardiovascular medicine, especially with the use of machine learning techniques that allow the identification of hidden patterns and complex associations in health data without any a priori assumptions. This review provides an overview on the use of artificial intelligence–based prediction models in vascular diseases, specifically focusing on aortic aneurysm, lower extremity arterial disease, and carotid stenosis. Potential benefits include the development of precision medicine in patients with vascular diseases. In addition, the main challenges that remain to be overcome to integrate artificial intelligence–based predictive models in clinical practice are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1